## **REPORT ON**

## PRELIMINARY GEOTECHNICAL INVESTIGATION

FOR

## PROPOSED REZONING DEVELOPMENT

AT

# NO.225 TERRANORA ROAD, TERRANORA DESCRIBED AS LOT 16 ON DP 856265

# **PREPARED FOR**

WRENN PTY LTD

# PROJECT REF: GI 3953-B

# 31 JANUARY 2019

SNO AC) INVESTIC

OFFICE LOCATION Unit 3 / 42 Machinery Drive Tweed Heads South NSW 2486

#### **Document Details**

| Project Number | GI 3953-b                                                         |
|----------------|-------------------------------------------------------------------|
| Poport Title   | Report on Preliminary Geotechnical Investigation                  |
| Report Inte    | Proposed Rezoning Development                                     |
| Site Address   | No.225 Terranora Road, Terranora described as Lot 16 on DP 856265 |
| Prepared for   | Wrenn Pty Ltd                                                     |

| Revision | Date     | Prepared By | Checked by  | Approved for Issue |
|----------|----------|-------------|-------------|--------------------|
| Final    | 24/09/18 | J Walle     | A O'Carroll | J Walle            |
| Revision | 31/01/19 | J Walle     |             | J Walle            |
|          |          |             |             |                    |

#### **Report Distribution**

| Revision | Recipient                                  | Method |
|----------|--------------------------------------------|--------|
|          | Wrenn Pty Ltd (Client) alanghope@gmail.com | Email  |
| Final    | Luke Blandford (Town Planner)              |        |
|          | LukeB@planitconsulting.com.au              |        |
|          | Wrenn Pty Ltd (Client) alanghope@gmail.com | Email  |
| Revision | Luke Blandford (Town Planner)              |        |
|          | LukeB@planitconsulting.com.au              |        |
|          |                                            |        |

This document was prepared in accordance with the scope of services described in Geotech Investigations Pty Ltd proposal and trading conditions as agreed with the client. This report is issued for the specific client, project and purpose(s) as described in the report, and should not be used or relied upon for other projects or purposes on the site or other sites.

The undersigned, for and on behalf of Geotechnical Investigations Pty Ltd, confirm that this document and all attached drawings, logs, and test results prepared by Geotech Investigations Pty Ltd have been checked and reviewed for errors, omissions and inaccuracies.

Yours faithfully For and on behalf of Geotech Investigations Pty Ltd

<u>James Walle</u> RPEQ (15701), RPEng (Civil), BEng (Civil) Senior Geotechnical Engineer





## **TABLE OF CONTENTS**

| 1.       | INTRODUCTION1                                                          |
|----------|------------------------------------------------------------------------|
| 2.       | SITE DESCRIPTION AND OBSERVATIONS                                      |
| 3.       | REGIONAL GEOLOGY2                                                      |
| 4.       | SITE INVESTIGATION                                                     |
| 4.1      | Field Work Methodology2                                                |
| 4.2      | Field Work Results2                                                    |
| 4.3      | Groundwater                                                            |
| 5.       | RESULTS AND DISCUSSION                                                 |
| 5.1      | Proposed Development4                                                  |
| 5.2      | Discussion on Subsurface and Surface Conditions4                       |
| 5.3      | Key Geotechnical Constraints4                                          |
| 5.4      | Uncontrolled Filling5                                                  |
| 5.5      | Remediation Options5                                                   |
| 5.6      | Earthworks6                                                            |
| 5.7      | Preliminary Site Classification                                        |
| 6.       | ASSESSMENT OF THE LIKELIHOOD OF SLOPE INSTABILITY USING AGS GUIDELINES |
| 6.1      | Discussion                                                             |
| 6.2      | Suggestions to Maintain and Reduce Risk of Instability11               |
| 7.       | LIMITS OF INVESTIGATION                                                |
| APPENDI  | CES:-                                                                  |
| Appendix | A: Site Plan S01                                                       |
| Appendix | B: Engineering Logs – Test Pit Profiles TP 1 to TP 14                  |
| Appendix | C: Geotechnical Report Standard Notes                                  |

Appendix D: AGS Australian Geoguide LR7 (Landslide Risk) Guidelines to Good and Bad Hillside Practices





## 1. INTRODUCTION

As requested, Geotech Investigations Pty Ltd (GI) has completed a preliminary geotechnical investigation for the rezoning application at No.225 Terranora Road, Terranora described as Lot 16 on DP 856265.

The scope of the geotechnical services was provided in a detailed proposal by GI, referenced: JW:GI P17 2058-a dated 17 November 2017. The scope of works are directed towards evaluating the following items to assist the design civil engineers, developer, town planner associated with the Development Application to Tweed Shire Council:-

- Subsurface conditions, including groundwater;
- Stability risk assessment in accordance with Australian Geomechanics Society Guidelines. Depending upon the results of this initial assessment, more detailed investigations may be required in the future for each individual site.
- Earthworks, excavations, site preparation, compaction, re-use of excavated materials for fill;
- Suitable batter slopes for cut and fill embankments (temporary and permanent);
- Shrink-swell movements and indicative Site Classification in accordance with AS2870-2011.
- Geotechnical constraints that may be encountered for future development.

Initial investigations were completed by GI, in a report entitled 'Preliminary Geotechnical Investigation' referenced: GI 3953-a dated 24 September 2019. These investigations have been included within this report.

### 2. SITE DESCRIPTION AND OBSERVATIONS

A site visit was carried out on the 13<sup>th</sup> of March and later on the 21<sup>st</sup> of December 2018 by a Senior Geotechnical Engineer from our office, with the purpose of viewing the northern large rectangular shaped portion of the site (the subject site) and making observations with regard to the local geology, existing vegetation, geomorphology and topography. The subject site was previously used as a rock quarry, typically extracting basalt. It must be noted that the extent of earthworks completed on the site obscured the natural slopes.

For the purpose of delineation, the southern portion of the site is described as the portion of the site which funnels down from the eastern side towards Old Ferry Road. This portion of the site was not walked over nor investigated and has not been further discussed.

In general, the subject site is most elevated along the entrance off Terranora Road between No.223 and No.227. From the south eastern corner of No.227, the subject site extends down to two main large platforms which were likely formed as part of the closure of the quarry. A relatively high steep embankment forms the majority of the northern site boundary which grades down from the adjacent properties along Terranora Road and The Parapet. A large overgrown fill batter was located between the two main platforms typically from test pit TP 4 towards TP 7.



Our Ref: GI 3953-b



A drainage or natural gully was located in the north eastern section of the site extending down towards Old Ferry Road. The southern boundary of the upper level extends steeply down towards the south and is heavily vegetated.

The site coverage is typically grass, low lying weeds and shrubs and isolated pockets of more matured trees, typically along the western and eastern sections of the site.

## 3. REGIONAL GEOLOGY

Reference to geological mapping by the Geological Survey of New South Wales 1:250,000 series 'Tweed Heads' sheet indicates the site is underlain by soils from the Tertiary aged (23 million years old) Lamington Volcanics, which typically comprise "basalt with members of rhyolite, trachyte, tuff, agglomerate and conglomerate". These materials often cap the much older (460 million years) Neranleigh Fernvale Beds.

As previously discussed, the subject site was previously used as a rock quarry, typically extracting basalt. Following the completion of the extraction activities, it is understood and further confirmed with these investigations, the subject site was extensively filled and reshaped to form the current topography.

### 4. SITE INVESTIGATION

### 4.1 Field Work Methodology

Fieldwork was undertaken on the 13<sup>th</sup> of March 2018 with additional investigations completed on the 21<sup>st</sup> of December 2018. The investigations comprised the excavation of 14 test pits in total, designated TP 1 to TP 14, using a 5.5 t hydraulic excavator. The test pits were undertaken at accessible locations spread over the general subject site area to termination depths between 0.6 m and 3.5 m. The approximate locations of the test pits are shown on Site Plan S01 attached in Appendix A with hand held GPS locations shown on the attached engineering logs.

This investigation has been carried out generally in accordance with AS  $1726 - 2017^{1}$  in terms of soil description. The fieldwork was carried out by an experienced senior Geotechnical Engineer who positioned and logged the materials encountered in the test pits. At the completion of the investigation, the test pits were backfilled with excavated spoil.

### 4.2 Field Work Results

The results of the fieldwork are described in the form of Engineering Logs in Appendix B, along with explanatory notes in Appendix C. In summary, the subsurface conditions encountered in the boreholes can be described as 'uncontrolled' **fill**, residual **soils** and weathered **rock**, described as basalt. Table 1 has summarised the typical depths of these layers at each test pit location.



<sup>&</sup>lt;sup>1</sup> Australian Standard AS 1726-2017 'Geotechnical site investigations', Standards Australia



| Test Pit | Uncontrolled Fill | Residual Soils | Rock      | T.D.               |
|----------|-------------------|----------------|-----------|--------------------|
| No.      | (m)               | (m)            | (m)       | (m)                |
| TP 1     | 0-1.8             | 1.8 – 2.3      | NE        | 2.3                |
| TP 2     | 0-1.3             | NE             | 1.3 - 1.8 | 1.8(1)             |
| TP 3     | 0 – 3.2           | NE             | 3.2 - 3.4 | 3.4                |
| TP 4     | 0-0.6             | 0.6 – 2.1      | NE        | 2.1                |
| TP 5     | 0 – 3.5           | NE             | NE        | 3.5                |
| TP 6     | 0-2.1             | NE             | NE        | 2.1 <sup>(1)</sup> |
| TP 7     | 0-0.4             | NE             | 0.4 - 0.6 | 0.6(1)             |
| TP 8     | NE                | 0-0.4          | 0.4 -1.7  | 0.7(1)             |
| TP 9     | 0-1.6             | NE             | 1.6 - 1.7 | 1.7(1)             |
| TP 10    | 0 – 0.7           | 0.7 – 0.9      | 0.9 - 1.1 | 1.1(1)             |
| TP 11    | NE                | 0 – 2.8        | NE        | 2.8                |
| TP 12    | 0 – 2.9           | NE             | NE        | 2.9                |
| TP 13    | 0-2.1             | 2.1 - 2.8      | NE        | 2.8                |
| TP 14    | NE                | 0-2.4          | NE        | 2.4                |

#### **Table 1: Summary of Subsurface Materials**

Notes: <sup>(1)</sup> Slow penetration to practical refusal NE - Not Encountered

#### 4.3 Groundwater

Standing groundwater and seepage was observed while the test pits remained open, refer to Table 2. It was evident in the test pits that the groundwater would generally sit at the interface between the fill and natural or above the basalt rock.

| Test Pit No. | Seepage Level (m BSL) | Standing Water Level (m BSL) |  |  |  |  |
|--------------|-----------------------|------------------------------|--|--|--|--|
| TP 1         | 1.8                   | NM                           |  |  |  |  |
| TP 5         | 3.2                   | NM                           |  |  |  |  |
| TP 9         | 1.6                   | 1.6                          |  |  |  |  |
| TP 10        | 0.9                   | NM                           |  |  |  |  |

### **Table 2: Ground Water Summary**

Notes: BSL – Below Existing Surface Levels

NM – Not Measured

It should be noted that groundwater is affected by climatic conditions, varying soil permeability, and will therefore vary over time.





### 5. RESULTS AND DISCUSSION

### 5.1 Proposed Development

The proposed development is understood to comprise the re- rezoning of the existing allotments for the purpose of future residential development. Detailed development plans have not been provided at this date, however a conceptual layout plan indicates a series of larger residential type allotments of a minimum 4000 m<sup>2</sup> each and an internal access road servicing these allotments.

### 5.2 Discussion on Subsurface and Surface Conditions

The results of the fieldwork and surface assessment indicate the conditions encountered in the location of the proposed rezoning area can be summarised as follows:-

- Previous Site History: The site was previously used as a 'basalt' rock quarry. Experience with similar geology in the area and based on knowledge of the quarry, it is understood the site was excavated of the overlying vegetation and soils, typically considered 'overburden'. The basalt rock is then extracted and exported for various uses. Following the cease of use for the quarry, the overburden was spread back over the site to form the existing topography. The test pit investigation further confirms these understandings. As a result of these works, significant and varying depths of 'uncontrolled' fill exists over the site.
- **Basalt:** Basalt was encountered at TP 2, TP 3 and TP 7 to TP 10. The basalt was typically described as highly to moderately weathered and is low to medium strength, as a guide only.
- **Drainage:** A relatively steep gully traverses from the north eastern section of the site (below the existing shed) and extends down towards Old Ferry Road. The gully provides significant drainage and surface water runoff for the overland flow on the site and there are some localised steep slopes within the gully. The northern areas of the site are typically poorly drained.

Table 2, Section 4.3 of the report provides details of the existing seepage and groundwater levels encountered during the investigations. The groundwater is likely a result of natural springs, commonly encountered in the area and surface water seeping through the fill. The seepage layers were typically encountered at the interface of the existing fill and natural soils or above the basalt.

### 5.3 Key Geotechnical Constraints

A summary of the key geotechnical constraints outlined within this report are detailed below:-

1. **Uncontrolled Filling:** The site has been extensively filled and the fill is described as typically poorly compacted containing traces of deleterious materials and oversized materials. If left insitu, shallow footing systems and 'standard' residential type development, infrastructure and service



GEOTECHNICAL



construction would not be possible due to unacceptable levels of risk against settlement and movement. There are common engineering solutions and construction options that can be considered as mitigation to such risks which are further detailed in Section 5.5.

- 2. *Slope Stability:* Based on experience with similar fill soils at slopes of greater than about 12 degrees there is an unacceptable level of risk against slope movement for areas within residential development. Localised gullies, steeper slopes and any areas of potential past and present instability (such as creep movement) will limit building locations, amongst possible other constraints associated with the development. Section 6 provides a detailed landslide susceptibility assessment along with possible mitigation options for areas of risk to instability.
- 3. **Road and Infrastructure:** Due to risk of irregular settlements of uncontrolled fill, roads, services and other infrastructure could not be supported within the existing uncontrolled fill. There are common engineering solutions and construction options that can be considered as mitigation to such risks which are further detailed in Section 5.5.
- 4. **Subsurface and Surface Drainage Control:** Further investigations to be completed to assist with a clear understanding on the best methodology to control drainage within the specific building envelopes and any future roads.

### 5.4 Uncontrolled Filling

For the purpose of this report, uncontrolled fill refers to the placement of materials without technical and control requirements as specified in AS  $3798 - 2007^2$ . If documentation can be provided to reflect such requirements have been met this report will need to be revised, however the presence of deleterious materials throughout the fill would cast doubt that such documentation is available.

The proposed rezoning of the subject site is understood to be for the use of residential land development consisting of large lots with access provided through an internal road. It is also understood that infrastructure will require stormwater and electricity, however sewerage will consist of onsite wastewater. The depth and extent of the uncontrolled fill encountered during the site investigation exhibits a level of risk to structures such as roads, dwellings and services and potentially adjoining land.

Through engineering design and flexible planning, there are solutions to control such risks. These options are detailed in Section 5.5.

### 5.5 Remediation Options

The following summarised mitigation options are provided as a guide to assist the developer, design engineers and planning consultants with reducing the risk of damage to roads, infrastructure, services and future dwellings caused by potential settlements of the uncontrolled fill. These alternative methods are to

<sup>&</sup>lt;sup>2</sup> Australian Standard AS 3798-2007 'Guidelines on earthworks for residential and commercial developments', Standards Australia





be used for discussion and conceptual planning purposes and it must be noted further detailed geotechnical design advice will be required during the detailed civil design and prior to any construction.

### 5.5.1 Remove and Replace (Option 1)

This option requires full removal and replacement of all uncontrolled fill and provides the development with the lowest risk of all options for potential movement associated with standard construction techniques. Refer to Section 5.5 for the required details of site preparation and fill placement to achieve this option.

### 5.5.2 Partial Remove and Replacement (Option 2)

This option requires localised removal and replacement of all uncontrolled fill within the building envelopes, road easements and under stormwater water service trenches. Refer to Section 5.5 for the required details of fill placement to achieve this option.

### 5.5.3 Ground Treatment (Option 3)

This option requires removal of the upper 1.5 m of uncontrolled fill over the site or a minimum 1.5 m below the design level (whichever is the greater). The exposed ground surface can then be compacted using 'impact rolling' techniques or conventional earthworks. Due to the high loads imposed by the impact rollers and the resulting higher compactive effort, this option is preferred and is likely to provide a more suitable foundation for filling over. Removal of natural ground, where encountered is not required and excavations may cease at this level at the discretion of GI consulting engineers.

## 5.5.4 Piled Structures and Removal and Replacement (Option 4)

This option requires removal and replacement of fill under roads and infrastructure and services, unless these can be designed for the potential movements. All buildings and other movement sensitive structures (retaining walls, etc) located in areas of uncontrolled fill will need to be supported using a piled foundation.

### 5.6 Earthworks

## 5.6.1 Site Preparation and Fill Placement

It must be noted, the scope of any earthworks program is dependent upon the choice of remediation option to be adopted in Section 5.5. Generally, all earthworks are to be carried out in accordance with AS  $3798 - 2007^3$ .

The placement of fill can be broadly based on the following guidelines, however the design engineer must detail the actual earthworks guidelines and should comply with AS 3798 – 2007.

• The building and pavement areas, and areas to accept new fill, should be prepared by removing any unsuitable "uncontrolled" fill, loose debris, soils that are wet, or contain vegetation or deleterious materials. The extent of removal of uncontrolled fill will be dependent on the remediation option selected in Section 5.5.

•

<sup>&</sup>lt;sup>3</sup> Australian Standard AS 3798-2007 *'Guidelines on earthworks for residential and commercial developments'*, Standards Australia



Our Ref: GI 3953-b





- It is expected that the existing clays and silts could be re-used for fill, depending upon the performance requirements, moisture control and conditioning, and ensuring any oversize particles are removed. The use of silty soils can be difficult as they are susceptible to moisture.
- The exposed subgrade should be test rolled using a 12 tonne roller (or similar), loaded water truck or dump truck to determine the presence of any soft spots, which should be excavated out and replaced with compacted select fill. The surface should be tyned to 0.2 m depth, moisture conditioned and then compacted.
- Structural fill for earthworks should be uniformly compacted to 95% Standard MDD (or higher), with moisture content within 2% wet or dry of OMC for cohesive material. Layer thickness depends on the compaction equipment, however 200 mm to 250 mm loose layer thickness is generally considered suitable for most mechanical compaction equipment. Where backfill for service trenches is carried out, the above layer thickness applies however if vibrating plates are used, the layers are to be placed in 100mm loose thickness.
- Field testing must be carried out to confirm the standard of compaction achieved and the moisture content during the construction. The test frequency and extent of testing is to be carried out as per AS 3798, Section 8.0 and compaction testing is to be carried out by a NATA accredited laboratory.
- The placement of fill material to support building loads and pavements must be placed and compacted under 'Level 1' full-time geotechnical inspections and testing.

### 5.6.2 Suitability of Excavated Material for Various Uses

The natural materials encountered on the site are considered suitable for use as engineered fill subject to the construction requirements described in Section 5.6.1 and the civil design engineers specification. Where the existing fill is to be removed and replaced consideration is required for careful management of fill including the requirements for removal of any deleterious materials, oversized materials or organics.

Consideration to contaminated land is beyond the scope of this report and consultation with a suitably qualified contaminated land consultant is required.

### 5.6.3 Batter Slopes

Stable batter angles in soils are strongly dependent upon fill type and compaction, soil type and strength, strength of underlying soils, slope angle / height and surcharge loadings. For the purpose of preliminary design, the batter slopes presented in Table 3 are considered to be suitable for the different soil and rock conditions encountered on the site. Where soil / rock conditions vary from those presented in Table 3, GI may provide guidance and alternative slope angles on site during construction. At these batter slopes, some movement at and behind the slope crest, as well as some localised slumping of batter faces may occur.



If batter heights exceed 3 m, then this will require batters to be separated by a minimum horizontal bench width of 1 m, which is to slope away at 1V:10H to promote drainage. The batter slopes assume that no surcharge loadings will be applied to the crest of the slope, and that no seepage out of the batter is present. If seepage is encountered or present at any stage, site specific geotechnical advice on batter stability should be obtained, and likely positive support options considered. All permanent batter slopes are to be protected from erosion and scour by use of appropriate drainage and vegetation.

| Material Description                              | Short Term (Maximum) | Long Term (Maximum) <sup>(1)</sup> |
|---------------------------------------------------|----------------------|------------------------------------|
| Uncontrolled Fill                                 | 1V:2H (26°)          | 1V:4H (14°)                        |
| Controlled Fill <sup>(2)</sup>                    | 1V:1H (45°)          | 1V:2H (26°)                        |
| Residual Soils                                    | 1V:1H (45°)          | 1V:2H (26°)                        |
| Very Low Strength (or better) Rock <sup>(3)</sup> | 1V:0.5H (63°)        | 1V: 1H (45°)                       |

|  | <b>Table 3: Slopes Ang</b> | gles for Batter Hei | ghts < 3 m (Unsurcharge | ed, Horizontal Ground | Behind Crest) <sup>(1</sup> |
|--|----------------------------|---------------------|-------------------------|-----------------------|-----------------------------|
|--|----------------------------|---------------------|-------------------------|-----------------------|-----------------------------|

Notes:

<sup>(1)</sup> A geotechnical engineer from GI is required to be on site during excavations of embankments and placement of fill batters to confirm safe batter slopes. These slopes assume the batters are not underlain by lower bearing strata.

<sup>(2)</sup> All 'controlled' fill batters should be overfilled, compacted and cut back at a maximum angle given in Table 3 for filled batters. These slope angles are dependent on the fill material used and must not be underlain with uncontrolled fill.

<sup>(3)</sup> The stability of excavations in rock is often governed by the presence of geological structures such as bedding planes, joints and faults. A suitably experienced Engineering Geologist/Geotechnical Engineer must inspect the excavations at the time of construction to assess whether the slope angles recommended in Table 3 are appropriate for the exposed conditions.

#### 5.7 Preliminary Site Classification

At this stage of the development and considering the existing conditions, typically the site must be classified as **'Class P'** in accordance with the provisions of AS 2870 due to the presence of 'uncontrolled' fill material and risk to slope movement. Where remediation options are completed, the individual sites may then be investigated along with site specific Site Classifications.

### 6. ASSESSMENT OF THE LIKELIHOOD OF SLOPE INSTABILITY USING AGS GUIDELINES

#### 6.1 Discussion

Natural hill slopes are formed by processes which reflect the site geology, climate and environment. The natural process can be influenced by human intervention in the form of earthworks, construction or other related activities. The risk associated in hill side construction is far greater than level construction. Good hill side building practices should be adopted to decrease the risk associated with it. Figures on good and bad hillside construction are presented in Appendix D of this report.

To define a slope as being 'stable' or 'unstable' is not technically feasible, however assessing the likelihood of slope movement can help in defining the stability of the site. Several methods can be adopted to assess the likelihood of slope movement including existing surface features supplemented with knowledge of the subsurface profile and experience gained on similar sites.

GEOTECHNICAL



A five-fold subdivision of landside likelihood categories has been developed by the Australian Geomechanics Society-Sydney Group (AGS-SG) and is described in their 1985 paper on "Geotechnical Risk Associated with Hillside Development". In March 2003, the AGS Sub-Committee on landslide Risk Management subsequently published "Landslide Risk Management Concepts and Guidelines" which review the earlier publication and the most current review in the 2007 publications.

The guidelines typically is to define and assess the "risk" as a function of the likelihood or probability of an event occurring (i.e. landslide, batter failure etc.) and the damage that this event may have (i.e. damage to property, loss of life etc.). Landslide and hazard risk zoning is a method of identifying different areas on a

site with regard to the potential of a hazard or risk and incorporating this risk into local planning and development. The risk assessment process involves answering the following question:-

- What might happen?
- How likely is it?
- What damage or injury may result?
- How important is it?
- What can be done about it?

It is normal to carry out a preliminary assessment of the first two points and is generally based on the site observations and soil profiles.

The causes of slope instability are well documented in the above mentioned literature and include the following factors:-

- Slope angle;
- Underlying geology and soil types;
- Vegetation cover;
- Variable and transient factors such as rainfall intensity, overland water flows, groundwater flows, piezometric pressures and seismic vibrations;
- Presence of soil masses in an unstable condition (ie. past movement);
- Man made factors such as construction activity including earthworks, removal of vegetation and changes to the surface and subsurface drainage, retaining walls, etc.

For any given area some of the above factors can be identified, while other possible contributing factors can be considered. From studying existing slope instabilities and the failure mechanisms, it is possible to make an assessment of the potential, relative likelihood of similar conditions arising in other areas. Slope instabilities can also be induced from man made factors including:-

• The construction of fill slopes;





- Undermining of steep slopes;
- Changing of water flow paths, in particular at the toe of slopes;
- Concentrated stormwater flow onto building platforms;
- Inadequate design and/or construction of retaining walls; and
- Saturation of soil below septic waste disposal absorption fields.

The terminology of the AGS Guidelines has been employed in the descriptions of hazards and the qualitative assessment of the likelihood, consequence and risk of slope instability. The following guidelines can be used for describing the likelihood of slope movement;

| Likelihood      | Probability             | Qualitative Risk | Significance       |
|-----------------|-------------------------|------------------|--------------------|
| Barely Credible | <b>10</b> <sup>-6</sup> | Very Low         | Acceptable         |
| Rare            | <b>10</b> <sup>-5</sup> | Low              | Usually Acceptable |
| Unlikely        | 10 <sup>-4</sup>        | Moderate         | May be tolerated   |
| Possible        | <b>10</b> <sup>-3</sup> | High             | Unacceptable       |
| Likely          | <b>10</b> <sup>-2</sup> | Very High        | Unacceptable       |
| Almost Certain  | 10-1                    | Extremely High   | Unacceptable       |

Any proposed residential development should generally include works which result in 'acceptable' or 'usually acceptable' risk level to the property after construction. In some cases, subject to appropriate monitoring and maintenance programs, a 'may be tolerated' risk may be accepted. Definitions of acceptable and tolerable risk included in the AGS Guidelines are attached as Appendix C.

#### 6.1.1 Risk Categorisation

The site has been qualitatively classified in accordance with the methods of the AGS.

The effect of these hazards on the site has been summarised in Table 4, together with a qualitative assessment of likelihood, consequence and risk to the property in its proposed conditions.

| able 4. Hazaru and hisk Summary for Proposed Multi-Dwening Development |            |                                                                                                                           |                      |  |
|------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------|----------------------|--|
| Hazard                                                                 | Likelihood | Possible Consequence                                                                                                      | <b>Risk Category</b> |  |
| Landslip in<br>"uncontrolled" fill<br>batters at greater than<br>14°   | Possible   | <ul> <li>Moderate damage to proposed<br/>structures, services and proposed roads.</li> <li>Injury to person/s.</li> </ul> | Moderate             |  |
| Landslip in 'natural' soils<br>sloping at less than 18°                | Rare       | <ul> <li>Moderate damage to proposed<br/>structures, buried services and parked<br/>vehicles.</li> </ul>                  | Low                  |  |

#### Table 4: Hazard and Risk Summary for Proposed Multi-Dwelling Development



ENVIRONMENTAL



| Hazard                                                                        | Likelihood | Possible Consequence                                                                                                                  | <b>Risk Category</b> |
|-------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|                                                                               |            | <ul> <li>Injury to person/s.</li> </ul>                                                                                               |                      |
| Landslip in 'natural' soils<br>sloping between 18°<br>and 26°                 | Unlikely   | <ul> <li>Moderate damage to proposed<br/>structures, buried services and parked<br/>vehicles.</li> <li>Injury to person/s.</li> </ul> | Moderate             |
| Surface water from<br>ridgeline / upper slopes<br>weakening founding<br>soils | Unlikely   | <ul> <li>Minor damage to structures and retaining walls for repair.</li> </ul>                                                        | Low                  |

The analysis summarised in Table 4 indicates **"moderate"** risks which are unacceptable for residential development and additional mitigation measures must be put in place to reduce the risk to more tolerable or acceptable levels.

### 6.2 Suggestions to Maintain and Reduce Risk of Instability

The risk mitigation will need to concentrate on maintaining the 'low' risk categories within the proposed building areas with specific mitigation required for areas within the 'moderate' risk categories.

The recommendations in Table 5 below are designed to maintain or reduce the risk of slope instability to an acceptable level for future development of the site.

|       |                 |             | -              |         | _       |          |
|-------|-----------------|-------------|----------------|---------|---------|----------|
| Tahle | 5. Rick         | Mitigation  | Measures fo    | nr Proi | nosed D | wellings |
| IUNIC | <b>J</b> . 1030 | Milligation | inicusui es it |         |         | w Chings |

|                                                                            |                                                                                                                                                                                                    | P1-1     |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Hazard                                                                     | Hazard Wiltigation Measures                                                                                                                                                                        | RISK     |
|                                                                            |                                                                                                                                                                                                    | Category |
| Landslip in "uncontrolled" fill batters at greater than 18°                | • Locate all footings for the dwellings and retaining walls in the natural clays or better (rock).                                                                                                 | Low      |
|                                                                            | • (Option 1) Retain Existing Uncontrolled Filled<br>Batters using engineered designed retaining walls.                                                                                             |          |
|                                                                            | • (Option 2) Flatten Existing Uncontrolled Fill batters in accordance with Section 5.6.2.                                                                                                          |          |
| Landslip in 'natural' soils<br>sloping at less than 18°                    | • Any development in these areas requires site specific investigations and will be dependent on Remediation Options as outlined in Section 5.5.                                                    | TBC      |
| Landslip in 'natural' soils sloping between 18°and 26°                     | • As above, however any development in these areas should be avoided.                                                                                                                              | TBC      |
| Surface water from ridgeline<br>/ upper slopes weakening<br>founding soils | • All surface water from the upper areas is collected and / or diverted away from the building envelopes, into the stormwater system or approved stormwater discharge point. Preventing additional | Low      |





| Hazard | Hazard Mitigation Measures                                                                     | Risk<br>Category |
|--------|------------------------------------------------------------------------------------------------|------------------|
|        | runoff on the site is essential in maintaining and improving the existing risk of instability. |                  |

Notes: TBC – Additional site specific investigations would be required for such areas of the site and would be highly dependent on the chosen remediation options as per Section 5.5.

The following recommendations are a summary and also aimed to assist with reducing or maintaining the risk of slope instability within the proposed building area:-

- Gravity retaining walls such as boulder, gabion and crib are not recommended, where underlain with existing fill.
- Embankment protection is to be placed on the embankment faces (e.g. mulching, planting vegetation) to limit the degree of rill erosion from water runoff and drying out / cracking if left exposed, as these will influence the potential for inducing landslips.
- Ensure all stormwater management plans and drainage plans are adhered to, particularly in relation to ensuring that all surface water is collected and diverted away from the building envelopes, top of batters and retaining walls. Preventing additional runoff on the site is essential in maintaining and improving the existing risk of instability.
- Maintain good vegetation over the remainder of the site and provide additional vegetation with good root systems for any batters and cut embankments.

### 7. LIMITS OF INVESTIGATION

Recommendations given in this report are based on the information supplied in conjunction with the findings of the investigation. Any change in the information provided (plans, allotment layouts, development use etc) may require additional testing and/or make recommendations invalid.

Every reasonable effort has been made to locate test sites so that the test pits are representative of the general soil conditions within the rezoning area to be investigated, as outlined by the client, however it must be noted that this assessment is a preliminary geotechnical investigation with the expectation that further discussions and rectification options will be discussed with GI during the detailed design phase.



GEOTECHNICAL



DRILLING



SITE PLAN SO1







APPENDIX B

ENGINEERING LOGS – TEST PITS PROFILES TP 1 TO TP 14



 Unit 3/42 Machinery Drive, Tweed Heads South
 NSW
 2486

 Ph: 0755 233 979
 Fax: 0755 233 981
 2486

### **ENGINEERING LOG – TEST PIT PROFILE**

|                                              | -         |                                                                                                                             |                                                             | -0                              |                                                           |                   |                                                  |                                                                                                 |                                                   | GPS:                                                                                            | S:                            | -28.23                                             | 5641                                                         |                                                                           | E: 153.532198                                                                                                                   |
|----------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------|-----------------------------------------------------------|-------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| CLII                                         | ENT:      | WRENI                                                                                                                       | NPIYLI                                                      | D                               |                                                           |                   |                                                  |                                                                                                 |                                                   |                                                                                                 |                               |                                                    | IESII                                                        | ם.ו ווי                                                                   | .: 121                                                                                                                          |
| PRC                                          | DJEC      | <b>T:</b> LOT 1                                                                                                             | L6 (No.2                                                    | 25) TE                          | RRANOR                                                    | A ROA             | D, BANC                                          | DRA POINT                                                                                       |                                                   |                                                                                                 |                               |                                                    | JOB N                                                        | <b>o.:</b> Gl                                                             | 3953-а                                                                                                                          |
| EQU                                          | JIPN      | IENT TY                                                                                                                     | <b>PE:</b> 5.5                                              | TONN                            | E KUBOT                                                   | A                 |                                                  | BUCKET S                                                                                        | <b>IZE:</b> 450mm                                 | n                                                                                               | -                             |                                                    | PAGE                                                         | : 1 of                                                                    | 1                                                                                                                               |
| Method                                       | Water     | Depth (m)                                                                                                                   | Graphic Log                                                 |                                 |                                                           |                   | Mat                                              | erial Description                                                                               |                                                   |                                                                                                 | Consistency<br>/ Rel. Density | Test                                               | Sample /                                                     | DCP Blows<br>/ 100mm                                                      | Structure and additional observation                                                                                            |
| TB                                           |           | -<br>-<br>-<br>0.5_<br>-<br>1.0_<br>-<br>1.5_<br>-<br>-                                                                     |                                                             | (CH<br>bou                      | ) Silty CL<br>Iders thr                                   | AY: Hig<br>ougho  | h plastic                                        | ity, With gravel,<br>: (w>w <sub>p</sub> ), Dark ro                                             | With cobble<br>ed/brown an                        | s and<br>d grey                                                                                 | F -<br>St                     | P<br>110                                           | P =<br>- 130                                                 |                                                                           | FILL<br>*PP's difficult to<br>complete due to coarse<br>materials and friable<br>nature of clay<br>*Boulders up to 0.6m<br>dia. |
|                                              |           | _<br>2.0_<br>_<br>_                                                                                                         |                                                             | (CH<br>cob                      | ) Silty CL<br>bles thro                                   | AY: Hig<br>oughou | h plastic<br>t, Moist                            | ity, With gravel<br>(w>w <sub>p</sub> ), Red/bro                                                | and boulders<br>own                               | i, With                                                                                         | St                            |                                                    |                                                              |                                                                           | RESIDUAL                                                                                                                        |
|                                              |           | 2.5_<br><br>3.0_<br><br>3.5_<br><br>4.0_<br><br>4.0_<br><br>4.5_                                                            |                                                             |                                 |                                                           |                   |                                                  |                                                                                                 |                                                   |                                                                                                 |                               |                                                    |                                                              |                                                                           |                                                                                                                                 |
| IP :                                         | I IE<br>N | KIVIINA<br>VETHOD                                                                                                           | ΙΕΟ ΑΤ                                                      | 2.3m -<br>W                     | <b>- LIIVIIT</b> (<br>EATHERIN                            | UF IN<br>IG       | /ESTIGA                                          | CONSISTENCY / I                                                                                 | DENSITY / ROO                                     | PENEIRAT                                                                                        |                               | KUUG                                               | H COB                                                        | SAMF                                                                      | PLES / TESTS                                                                                                                    |
| AD<br>C<br>MS<br>NMI<br>RR<br>TB<br>TC<br>WB | _C        | Auger Dr<br>Casing<br>Mud Sup<br>Rock Cori<br>Rock Roll<br>Toothed<br>Tri Cone<br>Wash Boo<br>WATER<br>Water Le<br>Water Se | illing<br>port<br>ing<br>er<br>Bucket<br>re<br>vel<br>epage | EW<br>HW<br>DW<br>MW<br>SW<br>F | Extrem<br>Highly<br>Distinc<br>Moder<br>Slightly<br>Fresh | rately<br>y       | VS<br>S<br>F<br>St<br>VSt<br>Hd<br>VL<br>L<br>MD | Very Soft<br>Soft<br>Firm<br>Stiff<br>Very Stiff<br>Hard<br>Very Loose<br>Loose<br>Medium Dense | D<br>VD<br>Fb<br>ELw<br>VLw<br>Lw<br>M<br>H<br>VH | Dense<br>Very Dense<br>Friable<br>Extremely I<br>Very Low<br>Low<br>Medium<br>High<br>Very High | Low                           | U()<br>D<br>BS<br>DCP<br>SPT<br>N<br>VS<br>A<br>PP | Undi<br>Distu<br>Bulk<br>Dyna<br>Stan<br>Num<br>Acid<br>Pock | isturbed<br>Sample<br>amic Co<br>dard Pe<br>ber of<br>Sulfate<br>set Pene | d (size in mm)<br>e<br>one Penetrometer<br>enetrometer Test<br>blows for SPT / 300mm<br>e Sample<br>etrometer (kPa)             |

 Unit 3/42 Machinery Drive, Tweed Heads South
 NSW
 2486

 Ph: 0755 233 979
 Fax: 0755 233 981
 2486

### **ENGINEERING LOG – TEST PIT PROFILE**

| 0.15                                          |                                                           |                                                                                                                                   |                                                         |                                       |                                                                     |                                   |                                                  |                                                                                                                 |                                                                                        | GPS:                                                                                                           | S:                            | -28.23                                             | 5315                                                                 |                                                                                        | E: 153.531518                                                                                                                              |
|-----------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------|-----------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| CLIEN                                         | NI: V                                                     | VRENN                                                                                                                             | PIYLI                                                   | D                                     |                                                                     |                                   |                                                  |                                                                                                                 |                                                                                        |                                                                                                                |                               |                                                    | IEST                                                                 | יו ו.D                                                                                 | .: 12                                                                                                                                      |
| PROJ                                          | ECT:                                                      | LOT 1                                                                                                                             | 6 (No.2                                                 | 25) TEI                               | RANOR                                                               | A ROA                             | D, BANG                                          | ORA POINT                                                                                                       |                                                                                        |                                                                                                                |                               |                                                    | JOB N                                                                | <b>o.:</b> GI                                                                          | 3953-a                                                                                                                                     |
| EQUI                                          | PME                                                       | NT ТҮР                                                                                                                            | <b>PE:</b> 5.5                                          | TONNE                                 | KUBOT                                                               | A                                 |                                                  | BUCKET                                                                                                          | SIZE: 450mm                                                                            | n                                                                                                              |                               |                                                    | PAGE                                                                 | : 1 of                                                                                 | 1                                                                                                                                          |
| Water<br>Method                               |                                                           | Depth (m)                                                                                                                         | Graphic Log                                             |                                       |                                                                     |                                   | Ma                                               | terial Descriptio                                                                                               | n                                                                                      |                                                                                                                | Consistency<br>/ Rel. Density | Test                                               | Sample /                                                             | DCP Blows<br>/ 100mm                                                                   | Structure and additional observation                                                                                                       |
| TB                                            |                                                           | -<br>-<br>-<br>-<br>-<br>1.0_<br>-<br>-<br>-                                                                                      |                                                         | (CH<br>Wea<br>Dar                     | ) Silty CL<br>athered  <br>k red/bro                                | AY: Hig<br>basalt I<br>own an     | h plastic<br>ooulders<br>d grey                  | ity, With grave                                                                                                 | l, With cobble<br>Vet to very mo                                                       | s and<br>ist (w>w <sub>p</sub> ),                                                                              | F -<br>St                     |                                                    |                                                                      |                                                                                        | FILL ?<br>*PP's difficult to<br>complete due to coarse<br>materials                                                                        |
|                                               |                                                           | 1.5_                                                                                                                              |                                                         | (HV<br>high                           | /) BASAL<br>1 plastici                                              | .T and l<br>ty silty              | ayers of<br>clay: Ree                            | (XW) BASALT r<br>d, dark orange/                                                                                | nixed with me<br>/brown and gro                                                        | dium to<br>ey                                                                                                  | VLw                           |                                                    |                                                                      |                                                                                        | RESIDUAL                                                                                                                                   |
|                                               |                                                           | -                                                                                                                                 |                                                         | (HV                                   | /-MW) B                                                             | ASALT:                            | Fine gra                                         | ained, Grey, da                                                                                                 | rk grey and red                                                                        | d/brown                                                                                                        | Lw                            |                                                    |                                                                      |                                                                                        |                                                                                                                                            |
|                                               |                                                           | 2.0_<br><br>2.5_<br><br>3.0_<br><br>3.5_<br><br>4.0_<br><br>4.0_                                                                  |                                                         |                                       |                                                                     |                                   |                                                  |                                                                                                                 |                                                                                        |                                                                                                                |                               |                                                    |                                                                      |                                                                                        |                                                                                                                                            |
| TP 2                                          | TERN                                                      | MINAT                                                                                                                             | ED AT                                                   | 1.8m -                                | - LIMIT                                                             | OF IN                             | /ESTIG/                                          | ATION DUE T                                                                                                     | O VERY SLOV                                                                            | V PENETRA                                                                                                      | TION                          |                                                    |                                                                      |                                                                                        |                                                                                                                                            |
| AD<br>C<br>MS<br>NMLC<br>RR<br>TB<br>TC<br>WB | ME<br>Au<br>Ca<br>Ro<br>Ro<br>To<br>Tri<br>Wa<br>Wa<br>Wa | THOD<br>uger Dril<br>asing<br>ud Supp<br>ock Corir<br>ock Rolle<br>oothed B<br>i Cone<br>ash Borr<br>ATER<br>ater Lev<br>ater See | ling<br>port<br>ng<br>er<br>Bucket<br>e<br>rel<br>epage | WI<br>EW<br>HW<br>DW<br>MW<br>SW<br>F | ATHERIN<br>Extren<br>Highly<br>Distinc<br>Moder<br>Slighth<br>Fresh | VG<br>nely<br>ctly<br>rately<br>y | VS<br>S<br>F<br>St<br>VSt<br>Hd<br>VL<br>L<br>MD | CONSISTENCY /<br>Very Soft<br>Soft<br>Firm<br>Stiff<br>Very Stiff<br>Hard<br>Very Loose<br>Loose<br>Medium Dens | DENSITY / ROC<br>D<br>VD<br>Fb<br>ELw<br>VLw<br>Lw<br>M<br>H<br>H<br>se VH<br>13/03/18 | CK STRENGTH<br>Dense<br>Very Dense<br>Friable<br>Extremely I<br>Very Low<br>Low<br>Medium<br>High<br>Very High | Low                           | U()<br>D<br>BS<br>DCP<br>SPT<br>N<br>VS<br>A<br>PP | Undi<br>Distu<br>Bulk<br>Dyna<br>Stan<br>Num<br>Vane<br>Acid<br>Pock | SAMF<br>sturbed<br>Sample<br>amic Cc<br>dard Pe<br>ber of<br>Sulfate<br>et Pene<br>Dat | PLES / TESTS<br>d (size in mm)<br>e<br>one Penetrometer<br>enetrometer Test<br>blows for SPT / 300mm<br>e Sample<br>etrometer (kPa)<br>te: |

 Unit 3/42 Machinery Drive, Tweed Heads South
 NSW
 2486

 Ph: 0755 233 979
 Fax: 0755 233 981
 2486

### **ENGINEERING LOG – TEST PIT PROFILE**

|                                            |                    |                                                                                                                   |                                                    |                                      |                                                                       |                           |                                                  |                                                                                                              |                   |                                                                 | GPS:                                                                                                       | S:                            | -28.23                                             | 5063                                                                 |                                                                                                    | E: 153.530866                                                                                                                       |
|--------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------|---------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| CL                                         | IENT.              | : WRENN                                                                                                           | N PTY LT                                           | D                                    |                                                                       |                           |                                                  |                                                                                                              |                   |                                                                 |                                                                                                            |                               |                                                    | TEST I                                                               | PIT I.D                                                                                            | .: TP 3                                                                                                                             |
| PF                                         | ROJEC              | <b>T</b> : LOT 1                                                                                                  | L6 (No.2                                           | 25) TE                               | RRANOR                                                                | A ROA                     | D. BAN                                           | ORA POINT                                                                                                    |                   |                                                                 |                                                                                                            |                               |                                                    | JOB N                                                                | I <b>o.:</b> GI                                                                                    | 3953-a                                                                                                                              |
|                                            |                    |                                                                                                                   |                                                    |                                      |                                                                       |                           | _,                                               |                                                                                                              |                   | 450                                                             |                                                                                                            |                               |                                                    |                                                                      |                                                                                                    | 4                                                                                                                                   |
| EC                                         | JUIN               |                                                                                                                   | PE: 5.5                                            | TONN                                 | E KUBOI                                                               | A                         |                                                  | BUCKE                                                                                                        | I SIZE:           | : 450mn                                                         | n                                                                                                          |                               |                                                    | PAGE                                                                 | : 1 01                                                                                             | 1                                                                                                                                   |
| Method                                     | Water              | Depth (m)                                                                                                         | Graphic Log                                        |                                      |                                                                       |                           | Ma                                               | terial Descript                                                                                              | ion               |                                                                 |                                                                                                            | Consistency<br>/ Rel. Density | Test                                               | Sample /                                                             | DCP Blows<br>/ 100mm                                                                               | Structure and additional observation                                                                                                |
| TB                                         |                    | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                       |                                                    | (CH<br>bou<br>and                    | ) Silty CL<br>Ilders thr<br>I grey                                    | AY: Hig<br>rougho         | h plastic<br>ut, Wet                             | city, With grav                                                                                              | vel, Wit          | h cobble<br>), Dark re                                          | s and<br>d/brown                                                                                           | F - St                        |                                                    |                                                                      |                                                                                                    | FILL<br>*PP's not possible with<br>Cobbles throughout<br>Trace of building<br>Material and grease<br>cartridge                      |
|                                            |                    | -                                                                                                                 |                                                    | (HV<br>hig                           | V) BASAL<br>1 plasticii                                               | . I and I<br>tv siltv     | ayers of<br>clay: Re                             | (XW) BASALI<br>d. dark orang                                                                                 | i mixed<br>e/brow | with me                                                         | dium to                                                                                                    | VLW                           |                                                    |                                                                      |                                                                                                    | RESIDUAL                                                                                                                            |
|                                            |                    | 3.5_<br>-<br>-<br>4.0_<br>-<br>4.5_                                                                               |                                                    |                                      |                                                                       |                           |                                                  |                                                                                                              |                   |                                                                 |                                                                                                            |                               |                                                    |                                                                      |                                                                                                    |                                                                                                                                     |
| TF                                         | <b>э з т</b> е     | RMINA                                                                                                             | TED AT                                             | 3.4m -                               |                                                                       | OF RE                     | ACH                                              |                                                                                                              |                   |                                                                 |                                                                                                            |                               |                                                    |                                                                      |                                                                                                    |                                                                                                                                     |
| AE<br>C<br>M:<br>NM<br>RF<br>TB<br>TC<br>W | S<br>MLC<br>R<br>B | METHOD<br>Auger Dri<br>Casing<br>Mud Sup<br>Rock Cori<br>Rock Roll<br>Toothed<br>Tri Cone<br>Wash Bor<br>Water Le | illing<br>port<br>ing<br>er<br>Bucket<br>re<br>vel | W<br>EW<br>HW<br>DW<br>MW<br>SW<br>F | EATHERIN<br>Extrem<br>Highly<br>Distinc<br>Moder<br>Slightly<br>Fresh | NG<br>nely<br>rately<br>y | VS<br>S<br>F<br>St<br>VSt<br>Hd<br>VL<br>L<br>MD | CONSISTENCY<br>Very Soft<br>Soft<br>Firm<br>Stiff<br>Very Stiff<br>Hard<br>Very Loose<br>Loose<br>Medium Der | Y / DENS          | SITY / ROC<br>D<br>VD<br>Fb<br>ELw<br>VLw<br>Lw<br>M<br>H<br>VH | CK STRENGT<br>Dense<br>Very Dens<br>Friable<br>Extremely<br>Very Low<br>Low<br>Medium<br>High<br>Very High | H<br>se<br>Low                | U()<br>D<br>BS<br>DCP<br>SPT<br>N<br>VS<br>A<br>PP | Undi<br>Distu<br>Bulk<br>Dyna<br>Stan<br>Num<br>Vane<br>Acid<br>Pock | SAMI<br>isturbe<br>urbed<br>Sample<br>amic Cc<br>dard Pe<br>ber of<br>e Shear<br>Sulfate<br>et Pen | PLES / TESTS<br>d (size in mm)<br>e<br>one Penetrometer<br>enetrometer Test<br>blows for SPT / 300mm<br>e Sample<br>etrometer (kPa) |
|                                            | •                  | Water Se                                                                                                          | epage                                              | Logge                                | ed By:                                                                | JDW                       |                                                  | Date:                                                                                                        | 1                 | 3/03/18                                                         | Chec                                                                                                       | ked By:                       |                                                    |                                                                      | Dat                                                                                                | te:                                                                                                                                 |

 Unit 3/42 Machinery Drive, Tweed Heads South
 NSW
 2486

 Ph: 0755 233 979
 Fax: 0755 233 981
 2486

### **ENGINEERING LOG – TEST PIT PROFILE**

|        |          |                       |                |            |                        |                    |                                         |                                   |                   | GPS:      | S:                            | -28.23   | 4886     |                      | E: 153.530287                                             |
|--------|----------|-----------------------|----------------|------------|------------------------|--------------------|-----------------------------------------|-----------------------------------|-------------------|-----------|-------------------------------|----------|----------|----------------------|-----------------------------------------------------------|
| CL     | IENT:    | WREN                  | N PTY LT       | D          |                        |                    |                                         |                                   |                   |           |                               |          | TEST     | PIT I.D              | .: TP 4                                                   |
| PR     |          | <b>T</b> • 10T        | 16 (No 2       | 25) TEI    |                        |                    |                                         |                                   |                   |           |                               |          | IOB N    | lo · G               | 3953-a                                                    |
|        |          |                       | 10 (110.2      | 237121     |                        |                    | <i>D</i> , <i>D</i> , <b>(10</b> )      |                                   |                   |           |                               |          | 3001     | 00                   |                                                           |
| EC     | QUIPN    | IENT TY               | <b>PE:</b> 5.5 | TONNE      | EKUBOT                 | A                  |                                         | BUCKET SI                         | <b>ZE:</b> 450mm  | า         |                               |          | PAGE     | : 1 of               | 1                                                         |
| Method | Water    | Depth (m)             | Graphic Log    |            |                        |                    | Mate                                    | rial Description                  |                   |           | Consistency<br>/ Rel. Density | Test     | Sample / | DCP Blows<br>/ 100mm | Structure and additional observation                      |
| ТВ     |          |                       |                | (CH<br>bou | ) Silty CL<br>lders, M | AY: Hig<br>oist (w | gh plasticit<br>>w <sub>p</sub> ), Darl | :y, With gravel, '<br>k red/brown | With cobbles      | s and     | F                             |          |          |                      | FILL<br>*Boulders up to 0.6m<br>dia.                      |
|        |          | 0.5_                  |                | (GP        | ) GRAVE                | L: With            | clay and                                | cobbles,                          |                   |           | L                             |          |          |                      |                                                           |
|        |          | -<br>-<br>-<br>1.0_   |                | (CH<br>bou | ) Silty CL<br>Iders, M | AY: Hig<br>oist (w | gh plasticit<br>>w <sub>p</sub> ), Darl | y, With gravel, '<br>k red/brown  | With cobble       | s and     |                               | -        |          |                      | RESIDUAL ? POSSIBLE<br>FILL<br>*Boulders up to 1m<br>dia. |
|        |          |                       |                |            |                        |                    |                                         |                                   |                   |           |                               |          |          |                      |                                                           |
|        |          | 1.5_<br>-<br>-<br>-   |                |            |                        |                    |                                         |                                   |                   |           |                               |          |          |                      |                                                           |
|        |          | 2.0_                  |                |            |                        |                    |                                         |                                   |                   |           |                               |          |          |                      |                                                           |
|        |          |                       |                |            |                        |                    |                                         |                                   |                   |           |                               |          |          |                      |                                                           |
|        |          | _<br>2.5_<br>_        |                |            |                        |                    |                                         |                                   |                   |           |                               |          |          |                      |                                                           |
|        |          | <br>3.0               |                |            |                        |                    |                                         |                                   |                   |           |                               |          |          |                      |                                                           |
|        |          | -<br>-<br>-           |                |            |                        |                    |                                         |                                   |                   |           |                               |          |          |                      |                                                           |
|        |          | 3.5_                  |                |            |                        |                    |                                         |                                   |                   |           |                               |          |          |                      |                                                           |
|        |          | -                     |                |            |                        |                    |                                         |                                   |                   |           |                               |          |          |                      |                                                           |
|        |          | 4.0_                  |                |            |                        |                    |                                         |                                   |                   |           |                               |          |          |                      |                                                           |
|        |          |                       |                |            |                        |                    |                                         |                                   |                   |           |                               |          |          |                      |                                                           |
|        |          | 4.5_                  |                |            |                        |                    |                                         |                                   |                   |           |                               |          |          |                      |                                                           |
| TP     | 4 TE     | KIMINA                | IED AT         | 2.1m -     | - / / /                |                    |                                         | ONICICTENCY / D                   |                   |           | ти                            | 1        |          | C ^ • •              |                                                           |
| АГ     | ז<br>ס   | vie i HOD<br>Auger Dr | illing         | EW         | Extren:                | vo<br>nelv         | VS                                      | UNSISTENCY / D<br>Verv Soft       | ENSTLY / ROC<br>D | Dense     | IH                            | ບ()      | Und      | SAMI<br>isturhe      | rles / TESTS<br>d (size in mm)                            |
| C      | •        | Casing                | Б              | HW         | Highly                 |                    | s                                       | Soft                              | VD                | Very Den  | se                            | D        | Distu    | urbed                |                                                           |
| M      | S        | Mud Sup               | port           | DW         | Distinc                | ctly               | F                                       | Firm                              | Fb                | Friable   |                               | BS       | Bulk     | Sampl                | e                                                         |
| NN     | ЛLC      | Rock Cor              | ing            | MW         | Moder                  | rately             | St                                      | Stiff                             | ELw               | Extremel  | y Low                         | DCP      | Dyna     | amic Co              | one Penetrometer                                          |
| RR     | 1        | Rock Rol              | ler            | SW         | Slighth                | у                  | VSt                                     | Very Stiff                        | VLw               | Very Low  | 1                             | SPT      | Stan     | dard P               | enetrometer Test                                          |
| ТВ     |          | Toothed               | Bucket         | F          | Fresh                  |                    | Hd                                      | Hard                              | Lw                | Low       |                               | Ν        | Num      | ber of               | blows for SPT / 300mm                                     |
| TC     | _        | Tri Cone              |                |            |                        |                    | VL                                      | Very Loose                        | M                 | Medium    |                               | VS       | Vane     | e Shear              |                                                           |
| W      | В        | Wash Bo               | re             |            |                        |                    |                                         | Loose                             | H                 | High      | -                             | A        | Acid     | Sulfate              | e Sample                                                  |
| _      | _        | WATER                 |                |            |                        |                    | MD                                      | Medium Dense                      | VH                | Very High | า                             | PP       | Pock     | et Pen               | etrometer (kPa)                                           |
|        | <b>V</b> | Water Le              | evel           |            |                        |                    |                                         |                                   |                   | 1         |                               | <u> </u> |          |                      |                                                           |
|        | •        | Water Se              | epage          | Logge      | ed By:                 | JDW                |                                         | Date:                             | 13/03/18          | Che       | cked By:                      |          |          | Dat                  | te:                                                       |

г

 Unit 3/42 Machinery Drive, Tweed Heads South
 NSW
 2486

 Ph: 0755 233 979
 Fax: 0755 233 981
 2486

### **ENGINEERING LOG – TEST PIT PROFILE**

| CLIEN                 | T· W/REN                                                                    |                                        |                                              |                                                                                                |                                                    |                                                                    |                                                              |                          |                                    | GPS:                                                       | S:                            | -28.23                | 4981<br>TEST                        | ח ו דופ                               | E: 153.531520                                                            |
|-----------------------|-----------------------------------------------------------------------------|----------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------|--------------------------|------------------------------------|------------------------------------------------------------|-------------------------------|-----------------------|-------------------------------------|---------------------------------------|--------------------------------------------------------------------------|
|                       |                                                                             | 16 (No 3                               | 25) TERI                                     |                                                                                                |                                                    |                                                                    |                                                              |                          |                                    |                                                            |                               |                       |                                     |                                       | 2052-2                                                                   |
| FOUL                  |                                                                             |                                        |                                              |                                                                                                |                                                    | D, BANC                                                            |                                                              |                          | • 4E0mr                            | 2                                                          |                               |                       |                                     | . 1 of                                | 3555-a                                                                   |
| EQUIP                 |                                                                             | PE: 5.5                                |                                              | KUBUTA                                                                                         | 4                                                  |                                                                    | вост                                                         |                          | . 450111                           |                                                            |                               |                       | PAGE                                |                                       |                                                                          |
| Water<br>Method       | Depth (m)                                                                   | Graphic Log                            |                                              |                                                                                                |                                                    | Mat                                                                | terial Descri                                                | ption                    |                                    |                                                            | Consistency<br>/ Rel. Density | Test                  | Sample /                            | DCP Blows<br>/ 100mm                  | Structure and additional observation                                     |
| TB                    |                                                                             |                                        | (CH)<br>bould<br>(MH/<br>Wet                 | Silty CLA<br>ders, Ver<br>(W>w <sub>p</sub> ),<br>(w>w <sub>p</sub> ),<br>(W>w <sub>p</sub> ), | Y: Hig<br>ry mois<br>Dark g<br>yey SIL<br>obish, N | h plastic<br>st (w>w;<br>T/Silty C<br>;rey<br>T/Silty C<br>Wet (w> | CLAY: High p<br>CLAY: High p<br>CLAY: High p<br>CLAY: High p | olasticity<br>plasticity | , Trace of                         | cobbles,                                                   | F-St                          | P<br>80               | P =<br>- 120<br>< 80                |                                       | FILL<br>*PP's difficult as<br>Material was<br>crumbling                  |
| AD<br>C<br>MS<br>NMLC |                                                                             | TED AT<br>rilling<br>oport<br>ing      | <b>3.5m</b> –<br>WE#<br>EW<br>HW<br>DW<br>MW | LIMIT C<br>ATHERIN<br>Extrem<br>Highly<br>Distinct<br>Modera                                   | DF REA<br>G<br>ely<br>tly<br>ately                 | ACH<br>VS<br>S<br>F<br>St                                          | CONSISTEN<br>Very Soft<br>Soft<br>Firm<br>Stiff              | CY / DEN                 | SITY / ROO<br>D<br>VD<br>Fb<br>ELW | CK STRENGTH<br>Dense<br>Very Dense<br>Friable<br>Extremely | H<br>E<br>Low                 | U()<br>D<br>BS<br>DCP | Undi<br>Distu<br>Bulk<br>Dyna       | SAMI<br>isturbed<br>Sample<br>amic Cc | PLES / TESTS<br>d (size in mm)<br>e<br>one Penetrometer                  |
| KR<br>TB<br>TC<br>WB  | Kock Rol<br>Toothed<br>Tri Cone<br>Wash Bo<br>WATER<br>Water Le<br>Water Se | ier<br>Bucket<br>ere<br>evel<br>eepage | F<br>F                                       | Sligntly<br>Fresh                                                                              | JDW                                                | vst<br>Hd<br>VL<br>L<br>MD                                         | Very Stiff<br>Hard<br>Very Loose<br>Loose<br>Medium D        | e<br>Dense<br>1          | VLW<br>Lw<br>M<br>H<br>VH          | Very Low<br>Low<br>Medium<br>High<br>Very High             | (ed Bv:                       | N<br>VS<br>A<br>PP    | Stan<br>Num<br>Vane<br>Acid<br>Pock | ber of<br>Shear<br>Sulfate            | enerrometer fest<br>blows for SPT / 300mm<br>e Sample<br>etrometer (kPa) |

 Unit 3/42 Machinery Drive, Tweed Heads South
 NSW
 2486

 Ph: 0755 233 979
 Fax: 0755 233 981
 2486

### **ENGINEERING LOG – TEST PIT PROFILE**

|          |             |                 |                |                |                    |          |           |                    |                    | GPS:       | S:                            | -28.23 | 5479         |                      | E: 153.530789                        |
|----------|-------------|-----------------|----------------|----------------|--------------------|----------|-----------|--------------------|--------------------|------------|-------------------------------|--------|--------------|----------------------|--------------------------------------|
| CL       | IENT:       | : WREN          | N PTY LT       | D              |                    |          |           |                    |                    |            |                               |        | TEST         | PIT I.D              | D.: TP 6                             |
| PF       | ROJEC       | <b>T:</b> LOT : | 16 (No.2       | 25) TEF        | RANOR              | A ROA    | D, BAN    | ORA POINT          |                    |            |                               |        | JOB N        | l <b>o.:</b> Gl      | l 3953-a                             |
| EC       |             | <b>VENT TY</b>  | <b>PE:</b> 5.5 | TONNE          | КИВОТ              | A        |           | BUCKET             | <b>SIZE:</b> 450mm | 1          |                               |        | PAGE         | : 1 of               | <sup>-</sup> 1                       |
|          |             |                 |                |                |                    |          |           |                    |                    |            |                               |        | _            |                      |                                      |
| Method   | Water       | Depth (m)       | Graphic Log    |                |                    |          | Ma        | terial Descriptio  | n                  |            | Consistency<br>' Rel. Density | Test   | Sample /     | DCP Blows<br>/ 100mm | Structure and additional observation |
| ТВ       |             | -               |                | (GP            | ) GRAVEI           | L: Fine  | to coars  | e gravel, Moist    | , Dark grey        |            | L                             |        |              |                      | FILL                                 |
|          |             | _               |                | (GP            | ) GRAVE            | I : Fine | to coars  | e gravel. With a   | and and clay       |            |                               |        |              |                      | *Boulders up to 0.8m                 |
|          |             | 0.5_            |                | thro           | bughout,           | With c   | obbles a  | and boulders, N    | loist, Dark grey   | /          |                               |        |              |                      | dia.                                 |
|          |             |                 |                |                |                    |          |           |                    |                    |            |                               |        |              |                      |                                      |
|          |             | -               |                |                |                    |          |           |                    |                    |            |                               |        |              |                      |                                      |
|          |             | 1.0_            |                |                |                    |          |           |                    |                    |            |                               |        |              |                      |                                      |
|          |             |                 |                |                |                    |          |           |                    |                    |            |                               |        |              |                      |                                      |
|          |             | -               |                |                |                    |          |           |                    |                    |            |                               |        |              |                      |                                      |
|          |             | 1.5_            |                |                |                    |          |           |                    |                    |            |                               |        |              |                      |                                      |
|          |             | _               |                |                |                    |          |           |                    |                    |            |                               |        |              |                      |                                      |
|          |             |                 |                |                |                    |          |           |                    |                    |            |                               |        |              |                      |                                      |
|          |             | 2.0_            |                |                |                    |          |           |                    |                    |            |                               |        |              |                      |                                      |
|          |             | -               |                |                |                    |          |           |                    |                    |            |                               |        |              |                      |                                      |
|          |             | 2.5             |                |                |                    |          |           |                    |                    |            |                               |        |              |                      |                                      |
|          |             | -               |                |                |                    |          |           |                    |                    |            |                               |        |              |                      |                                      |
|          |             |                 |                |                |                    |          |           |                    |                    |            |                               |        |              |                      |                                      |
|          |             | 3.0_            |                |                |                    |          |           |                    |                    |            |                               |        |              |                      |                                      |
|          |             | -               |                |                |                    |          |           |                    |                    |            |                               |        |              |                      |                                      |
|          |             | _               |                |                |                    |          |           |                    |                    |            |                               |        |              |                      |                                      |
|          |             | 3.5_            |                |                |                    |          |           |                    |                    |            |                               |        |              |                      |                                      |
| 1        |             |                 |                |                |                    |          |           |                    |                    |            |                               |        |              |                      |                                      |
|          |             | _               |                |                |                    |          |           |                    |                    |            |                               |        |              |                      |                                      |
|          |             | 4.0_            |                |                |                    |          |           |                    |                    |            |                               |        |              |                      |                                      |
|          |             |                 |                |                |                    |          |           |                    |                    |            |                               |        |              |                      |                                      |
|          |             | -               |                |                |                    |          |           |                    |                    |            |                               |        |              |                      |                                      |
| <u> </u> |             | 4.5_            |                |                |                    |          |           |                    |                    |            | <u> </u>                      |        |              |                      |                                      |
| TF       | <u>6 TE</u> | RMINA           | TED AT         | 2.1m -         | - TERMI            |          | D DUE 1   | CONSISTENCY        | NVESTIGATIC        | N AND SI   |                               | CAVA   | ΓΙΟΝ         | 5774                 |                                      |
| AD       | י<br>כ      | Auger Dr        | illing         | EW             | Extren             | nely     | VS        | Very Soft          | DENSITY / KUC      | Dense      |                               | U()    | Und          | isturbe              | d (size in mm)                       |
| С        | _           | Casing          |                | HW             | Highly             | .        | S         | Soft               | VD                 | Very Dense | e                             | D      | Distu        | urbed                |                                      |
| M        | S           | Mud Sup         | port           | DW             | Disting            | ctly     | F         | Firm               | Fb                 | Friable    | 1.00.00                       | BS     | Bulk         | Sampl                | e<br>Denotre meter                   |
|          | VILC        | Rock Cor        | ing<br>Ier     | IVI VV<br>SVV/ | IVIODEI<br>Slightl | vately   | St<br>VSt | SUIT<br>Verv Stiff | ELW<br>VI w        | Extremely  | LOW                           | SPT    | Dyna<br>Stan | amic Co<br>dard Pa   | one Penetrometer                     |
| TP       | \<br>}      | Toothed         | Bucket         | F              | Fresh              | у        | Hd        | Hard               | Lw                 | Low        |                               | N      | Num          | ber of               | blows for SPT / 300mm                |
| тс       |             | Tri Cone        | Lucie          |                |                    |          | VL        | Very Loose         | M                  | Medium     |                               | VS     | Vane         | e Shear              |                                      |
| W        | В           | Wash Bo         | re             |                |                    |          | L         | Loose              | н                  | High       |                               | А      | Acid         | Sulfate              | e Sample                             |
|          |             | WATER           |                |                |                    |          | MD        | Medium Dens        | e VH               | Very High  |                               | PP     | Pock         | et Pen               | etrometer (kPa)                      |
| '        | •           | Water Le        | evel           |                |                    |          |           | 1                  |                    |            |                               |        |              | -                    |                                      |
|          |             | Water Se        | epage          | Logge          | ed Bv:             | JDW      |           | Date:              | 13/03/18           | Check      | ked Bv:                       |        |              | Dat                  | te:                                  |

 Unit 3/42 Machinery Drive, Tweed Heads South
 NSW
 2486

 Ph: 0755 233 979
 Fax: 0755 233 981
 2486

### **ENGINEERING LOG – TEST PIT PROFILE**

|        |       |                 |                |            |                        |                 |            |                   |                    | GPS:               | 5:                            | -28.23 | 5950         |                      | E: 153.531665                        |
|--------|-------|-----------------|----------------|------------|------------------------|-----------------|------------|-------------------|--------------------|--------------------|-------------------------------|--------|--------------|----------------------|--------------------------------------|
| CL     | IENT  | : WRENI         | N PTY LT       | D          |                        |                 |            |                   |                    |                    |                               |        | TEST         | PIT I.D              | D.: TP 7                             |
| DE     |       |                 | 16 (No 2       | 25) TE     |                        |                 |            |                   |                    |                    |                               |        |              |                      | 12052 2                              |
| -      | (O)E( | <b>CI.</b> LOT. | 10 (110.2      | 23712      | NNANON                 |                 | D, BANC    |                   |                    |                    |                               |        | JOBIN        | <b>IU.</b> . G       | 1 5555-a                             |
| EC     | QUIPI | MENT TY         | <b>PE:</b> 5.5 | TONNI      | Е КИВОТ                | Ā               |            | BUCKET            | <b>SIZE:</b> 450mm | 1                  |                               |        | PAGE         | E: 1 of              | f1                                   |
| Method | Water | Depth (m)       | Graphic Log    |            |                        |                 | Mat        | erial Description | 1                  |                    | Consistency<br>/ Rel. Density | Test   | Sample /     | DCP Blows<br>/ 100mm | Structure and additional observation |
| ТВ     |       |                 |                | (CH<br>Dar | ) Silty CL<br>k red/br | .AY: Hig<br>own | gh plastic | ity, Trace of gra | avel, Moist (w>    | >w <sub>p</sub> ), | F -<br>St                     |        |              |                      | FILL                                 |
|        |       |                 |                | (GP        | ) Sandy (              | GRAVE           | L: Fine to | coarse gravel,    | Moist, Grey        |                    |                               |        |              |                      |                                      |
|        |       | 0.5_            |                | (HV        | V) BASAL               | .T: Fine        | grained,   | Dark grey         |                    |                    |                               |        |              |                      | RESIDUAL                             |
|        |       |                 |                |            |                        |                 |            |                   |                    |                    |                               |        |              |                      |                                      |
|        |       | <br>4.5         |                |            |                        |                 |            |                   |                    |                    |                               |        |              |                      |                                      |
| TP     | 7 TI  | ERMINA          | TED AT         | 0.6m -     | - EXCAV                | ATOR            | REFUSA     | AL .              |                    |                    |                               |        |              |                      |                                      |
|        |       | METHOD          |                | W          | EATHERIN               | NG              |            | CONSISTENCY /     | DENSITY / ROC      | K STRENGT          | Н                             |        |              | SAM                  | PLES / TESTS                         |
|        | J     | Auger Dr        | iiling         | EW<br>HW/  | Extren                 | nely<br>,       | vs<br>s    | very Soft<br>Soft | D<br>VD            | Dense<br>Very Deng | Se la                         | U()    | Und<br>Dicto | isturbe<br>urhed     | a (size in mm)                       |
| M      | s     | Mud Sun         | port           | DW         | Disting                | ctly            | F          | Firm              | Fb                 | Friable            |                               | BS     | Bulk         | Sampl                | e                                    |
| NN     | /LC   | Rock Cor        | ing            | MW         | Mode                   | ratelv          | St         | Stiff             | ELw                | Extremely          | Low                           | DCP    | Dvna         | amic Co              | ~<br>one Penetrometer                |
| RR     |       | Rock Rol        | ler            | SW         | Slightl                | y               | VSt        | Very Stiff        | VLw                | Very Low           |                               | SPT    | Stan         | dard P               | enetrometer Test                     |
| ТВ     | -     | Toothed         | Bucket         | F          | Fresh                  | ,               | Hd         | Hard              | Lw                 | Low                |                               | N      | Num          | ber of               | blows for SPT / 300mm                |
| ТС     |       | Tri Cone        |                |            |                        |                 | VL         | Very Loose        | M                  | Medium             |                               | VS     | Vane         | e Shear              | r ,                                  |
| W      | В     | Wash Bo         | re             |            |                        |                 | L          | Loose             | н                  | High               |                               | А      | Acid         | Sulfate              | e Sample                             |
|        |       | WATER           |                |            |                        |                 | MD         | Medium Dense      | e VH               | Very High          |                               | PP     | Pock         | ket Pen              | etrometer (kPa)                      |
|        | •     | Water Le        | evel           |            |                        |                 |            |                   |                    |                    |                               |        |              |                      |                                      |
|        | •     | Water Se        | epage          | Logg       | ed By:                 | JDW             |            | Date:             | 13/03/18           | Chec               | ked By:                       |        |              | Dat                  | te:                                  |

 Unit 3/42 Machinery Drive, Tweed Heads South
 NSW
 2486

 Ph: 0755 233 979
 Fax: 0755 233 981
 2486

### **ENGINEERING LOG – TEST PIT PROFILE**

|        |           |           |                | 0         |                        |          |          |                     |                | GPS:             | S:                            | 28.235   | 130          |                      | <b>E:</b> 153.533190                 |
|--------|-----------|-----------|----------------|-----------|------------------------|----------|----------|---------------------|----------------|------------------|-------------------------------|----------|--------------|----------------------|--------------------------------------|
|        | IEN I     | . VVKEN   | NYIYLI         | U         |                        |          |          |                     |                |                  |                               |          | IESI         | rii 1.D              | .: 178                               |
| PF     | ROJEC     | T: LOT    | 16 (No.2       | 25) TE    | RRANOR                 | RA ROA   | D, BANC  | DRA POINT           |                |                  |                               |          | JOB N        | <b>lo.:</b> GI       | 3953-b                               |
| EC     | QUIPI     | ΛΕΝΤ ΤΥ   | <b>PE:</b> 5.5 | TONN      | E KUBOT                | A        |          | BUCKET S            | IZE: 450mm     | n x 2.1m         |                               |          | PAGE         | : 1 of               | 1                                    |
| Method | Water     | Depth (m) | Graphic Log    |           |                        |          | Mat      | erial Description   |                |                  | Consistency<br>/ Rel. Density | Test     | Sample /     | DCP Blows<br>/ 100mm | Structure and additional observation |
| -      |           | _         |                | (CI)      | ) Gravelly             | CLAY:    | Medium   | plasticity, Dry, F  | Red/brown      |                  |                               |          |              |                      | RESIDUAL                             |
| Β      |           | -         |                | (CI)      | ) Sandy C              | LAY: M   | edium pl | lasticity, With sil | t, Trace of gr | avel, Dry        | VSt                           |          | _            |                      | Organic material                     |
|        |           | -         |                | (w<       | <w<sub>p), Red</w<sub> | l/browi  | n        |                     |                |                  | - Hd                          | Р<br>300 | P =<br>- 450 |                      | throughout                           |
|        |           | 0.5_      |                | (H\       | N) BASAL               | .T: Fine | grained, | Very fractured,     | Dry, Dark red  | d/brown,         | Vlw                           |          |              |                      |                                      |
|        |           | -         |                | ora       | inge/brov              | wn and   | grey     |                     |                |                  | $\checkmark$                  |          |              |                      |                                      |
|        |           | -         |                |           |                        |          |          |                     |                |                  | LW                            |          |              |                      |                                      |
|        |           | -         |                |           |                        |          |          |                     |                |                  |                               |          |              |                      |                                      |
|        |           | 1.0_      |                |           |                        |          |          |                     |                |                  |                               |          |              |                      |                                      |
|        |           | -         |                |           |                        |          |          |                     |                |                  |                               |          |              |                      |                                      |
|        |           | -         |                |           |                        |          |          |                     |                |                  |                               |          |              |                      |                                      |
|        |           | -         |                |           |                        |          |          |                     |                |                  |                               |          |              |                      |                                      |
|        |           | 1.5_      |                |           |                        |          |          |                     |                |                  |                               |          |              |                      |                                      |
|        |           | -         |                |           |                        |          |          |                     |                |                  |                               |          |              |                      |                                      |
|        |           | -         |                |           |                        |          |          |                     |                |                  |                               |          |              |                      |                                      |
|        |           | -         |                |           |                        |          |          |                     |                |                  |                               |          |              |                      |                                      |
|        |           | 2.0_      |                |           |                        |          |          |                     |                |                  |                               |          |              |                      |                                      |
|        |           | -         |                |           |                        |          |          |                     |                |                  |                               |          |              |                      |                                      |
|        |           | -         |                |           |                        |          |          |                     |                |                  |                               |          |              |                      |                                      |
|        |           | -         |                |           |                        |          |          |                     |                |                  |                               |          |              |                      |                                      |
|        |           | 2.5_      |                |           |                        |          |          |                     |                |                  |                               |          |              |                      |                                      |
|        |           | -         |                |           |                        |          |          |                     |                |                  |                               |          |              |                      |                                      |
|        |           | -         |                |           |                        |          |          |                     |                |                  |                               |          |              |                      |                                      |
|        |           | -         |                |           |                        |          |          |                     |                |                  |                               |          |              |                      |                                      |
|        |           | 3.0_      |                |           |                        |          |          |                     |                |                  |                               |          |              |                      |                                      |
|        |           | -         |                |           |                        |          |          |                     |                |                  |                               |          |              |                      |                                      |
|        |           | -         |                |           |                        |          |          |                     |                |                  |                               |          |              |                      |                                      |
|        |           | _         |                |           |                        |          |          |                     |                |                  |                               |          |              |                      |                                      |
|        |           | 3.5_      |                |           |                        |          |          |                     |                |                  |                               |          |              |                      |                                      |
|        |           | -         |                |           |                        |          |          |                     |                |                  |                               |          |              |                      |                                      |
|        |           | -         |                |           |                        |          |          |                     |                |                  |                               |          |              |                      |                                      |
|        |           | _         |                |           |                        |          |          |                     |                |                  |                               |          |              |                      |                                      |
|        |           | 4.0_      |                |           |                        |          |          |                     |                |                  |                               |          |              |                      |                                      |
| 1      |           | -         |                |           |                        |          |          |                     |                |                  |                               |          |              |                      |                                      |
| 1      |           | _         |                |           |                        |          |          |                     |                |                  |                               |          |              |                      |                                      |
| 1      |           |           |                |           |                        |          |          |                     |                |                  |                               |          |              |                      |                                      |
| Т      | )<br>8 тя | 4.5_      | TED AT         | 0.7m ·    | - ΕΧΓΔΝ                |          | RFFIIS   |                     |                |                  |                               | 1        |              | 1                    |                                      |
| F.     | 511       | METHOD    |                | W         | EATHERIN               | NG       |          | CONSISTENCY / D     | DENSITY / ROC  | K STRENGT        | Н                             |          |              | SAM                  | PLES / TESTS                         |
| AD     | )         | Auger Di  | rilling        | EW        | Extren                 | nely     | VS       | Very Soft           | D              | Dense            |                               | U( )     | Und          | isturbe              | d (size in mm)                       |
| C      | c         | Casing    | nort           | HW<br>DW/ | Highly                 | rthy     | S<br>F   | Soft<br>Firm        | VD<br>Fb       | Very Dens        | se                            | D<br>RC  | Dist         | urbed<br>Sample      | ٩                                    |
| NN     | s<br>ALC  | Rock Cor  | ring           | MW        | Mode                   | rately   | St       | Stiff               | ELw            | Extremely        | Low                           | DCP      | Dyna         | amic Co              | one Penetrometer                     |
| RR     | 2         | Rock Rol  | ler            | SW        | Slightl                | y ,      | VSt      | Very Stiff          | VLw            | ,<br>Very Low    |                               | SPT      | Stan         | dard P               | enetrometer Test                     |
| TB     | <b>.</b>  | Toothed   | Bucket         | F         | Fresh                  |          | Hd       | Hard                | Lw             | Low              |                               | N        | Num          | ber of               | blows for SPT / 300mm                |
|        | R         | Uri Cone  | e              |           |                        |          | L        | very Loose<br>Loose | M<br>H         | ivieaium<br>High |                               | A        | vane<br>Acid | e snear<br>Sulfate   | e Sample                             |
| ~~     | 5         | WATER     |                |           |                        |          | MD       | Medium Dense        | VH             | Very High        |                               | PP       | Pock         | ket Pen              | etrometer (kPa)                      |
|        | •         | Water Le  | evel           |           |                        |          |          | -                   |                |                  |                               |          |              | _                    |                                      |
|        | •         | Water Se  | eepage         | Logg      | ed By:                 | JDW      |          | Date:               | 21/12/18       | Chec             | ked By:                       | JM       | /            | Dat                  | t <b>e:</b> 31/01/19                 |

 Unit 3/42 Machinery Drive, Tweed Heads South
 NSW
 2486

 Ph: 0755 233 979
 Fax: 0755 233 981
 2486

### **ENGINEERING LOG – TEST PIT PROFILE**

|       |        |                   |                |            |                               |                   |           |                    |                | GPS:              | S:                  | 28.235   | 015°     |                   | <b>E:</b> 153.532526°                     |
|-------|--------|-------------------|----------------|------------|-------------------------------|-------------------|-----------|--------------------|----------------|-------------------|---------------------|----------|----------|-------------------|-------------------------------------------|
| CL    | LIENT: | WREN              | N PTY LT       | D          |                               |                   |           |                    |                |                   |                     |          | TEST     | PIT I.D           | .: TP 9                                   |
| PF    | ROJEC  | T: LOT            | 16 (No.2       | 25) TEI    | RRANOR                        | A ROA             | D, BANG   | ORA POINT          |                |                   |                     |          | JOB N    | l <b>o.:</b> Gl   | i 3953-b                                  |
| EC    |        | IENT TY           | <b>PE:</b> 5.5 | TONNE      | Е КИВОТ                       | A                 |           | BUCKET S           | IZE: 450mm     | n X 2.8m          |                     |          | PAGE     | : 1 of            | 1                                         |
| -     |        | _                 | G              |            |                               |                   |           |                    |                |                   | Ξo                  |          |          |                   |                                           |
| Methc | Wate   | Depth (           | raphic         |            |                               |                   | Ma        | terial Description |                |                   | onsiste<br>Rel. Der | Test     | Sample   | )CP Blo<br>/ 100m | Structure and additional observation      |
| ā     |        | m)                | Log            |            |                               |                   |           |                    |                |                   | ncy<br>1sity        |          | <u> </u> | ws<br>sw          |                                           |
|       |        |                   |                | (SC)       | Clavev                        | SAND:             | Fine to c | oarse sand. With   | gravel and b   | oulders.          |                     |          |          |                   | FILL                                      |
| Β     |        | _                 |                | We         | t, Dark re                    | ed/brov           | wn and g  | grey               | 0              | ,                 |                     |          |          |                   |                                           |
|       |        | -                 |                |            |                               |                   |           |                    |                |                   |                     |          |          |                   |                                           |
|       |        | 0.5               |                |            |                               |                   |           |                    |                |                   |                     |          |          |                   |                                           |
|       |        | _                 |                |            |                               |                   |           |                    |                |                   |                     |          |          |                   |                                           |
|       |        | -                 |                |            |                               |                   |           |                    |                |                   |                     |          |          |                   |                                           |
|       |        | -                 |                |            |                               |                   |           |                    |                |                   |                     |          |          |                   |                                           |
|       |        | 1.0_              |                |            |                               |                   |           |                    |                |                   |                     |          |          |                   | Large >1.0m boulders                      |
|       |        | -                 |                |            |                               |                   |           |                    |                |                   |                     |          |          |                   |                                           |
|       |        | -                 |                | (Cl-       | CH) Sanc                      | ly CLAY           | ': Mediu  | m to high plastic  | ity, With grav | vel, Wet,         | F                   |          |          |                   |                                           |
|       |        | -                 |                | Dai        | k urange                      | 7010WI            | I         |                    |                |                   |                     |          |          |                   |                                           |
|       | ▼      | 1.5_              |                |            |                               |                   |           |                    |                |                   |                     |          |          |                   |                                           |
|       | ►      | -                 |                |            |                               |                   |           |                    |                |                   |                     |          |          |                   |                                           |
|       |        | _                 |                | (HV<br>ora | /) BASAL                      | .I:Fine<br>wn and | grained   | , Very fractured,  | Dry, Dark red  | d/brown,          | - M                 |          |          |                   | RESIDUAL                                  |
|       |        | _                 |                | 0.0        |                               |                   | 8.01      |                    |                |                   |                     |          |          |                   |                                           |
|       |        |                   |                |            |                               |                   |           |                    |                |                   |                     |          |          |                   |                                           |
|       |        | 2.0_              |                |            |                               |                   |           |                    |                |                   |                     |          |          |                   |                                           |
|       |        | _                 |                |            |                               |                   |           |                    |                |                   |                     |          |          |                   |                                           |
|       |        | _                 |                |            |                               |                   |           |                    |                |                   |                     |          |          |                   |                                           |
|       |        | 25                |                |            |                               |                   |           |                    |                |                   |                     |          |          |                   |                                           |
|       |        | 2.5_              |                |            |                               |                   |           |                    |                |                   |                     |          |          |                   |                                           |
|       |        | _                 |                |            |                               |                   |           |                    |                |                   |                     |          |          |                   |                                           |
|       |        | -                 |                |            |                               |                   |           |                    |                |                   |                     |          |          |                   |                                           |
|       |        | 20                |                |            |                               |                   |           |                    |                |                   |                     |          |          |                   |                                           |
|       |        | 3.0_              |                |            |                               |                   |           |                    |                |                   |                     |          |          |                   |                                           |
|       |        | _                 |                |            |                               |                   |           |                    |                |                   |                     |          |          |                   |                                           |
|       |        | -                 |                |            |                               |                   |           |                    |                |                   |                     |          |          |                   |                                           |
|       |        | 35                |                |            |                               |                   |           |                    |                |                   |                     |          |          |                   |                                           |
|       |        |                   |                |            |                               |                   |           |                    |                |                   |                     |          |          |                   |                                           |
|       |        | _                 |                |            |                               |                   |           |                    |                |                   |                     |          |          |                   |                                           |
|       |        | -                 |                |            |                               |                   |           |                    |                |                   |                     |          |          |                   |                                           |
|       |        | 4.0               |                |            |                               |                   |           |                    |                |                   |                     |          |          |                   |                                           |
|       |        |                   |                |            |                               |                   |           |                    |                |                   |                     |          |          |                   |                                           |
|       |        | -                 |                |            |                               |                   |           |                    |                |                   |                     |          |          |                   |                                           |
|       |        | -                 |                |            |                               |                   |           |                    |                |                   |                     |          |          |                   |                                           |
| TF    | 9 TE   | RMINA             | TED AT         | 1.7m -     | - EXCAV                       | ATOR              | REFUS     | AL ON ROCK         |                |                   | I                   | -1       |          | I                 | 1                                         |
|       | Ν      | VETHOD            |                | W          | EATHERIN                      | ١G                |           | CONSISTENCY / D    | ENSITY / ROC   | K STRENG          | TH                  |          |          | SAMI              | PLES / TESTS                              |
| A     | 0      | Auger Dr          | illing         | EW<br>HW/  | Extren<br>Highly              | nely              | VS<br>S   | Very Soft<br>Soft  | D<br>VD        | Dense<br>Very Den | se                  | U()      | Und      | isturbe<br>Irbed  | d (size in mm)                            |
| M     | S      | Casing<br>Mud Sup | port           | DW         | Disting                       | ctly              | F         | Firm               | Fb             | Friable           | 50                  | BS       | Bulk     | Sample            | e                                         |
| N     | VILC   | Rock Cor          | ing            | MW         | Mode                          | rately            | St        | Stiff              | ELw            | Extremel          | y Low               | DCP      | Dyna     | amic Co           | one Penetrometer                          |
| RF    | 2      | Rock Rol          | ler<br>Buckot  | SW<br>F    | Slightl <sup>i</sup><br>Fresh | У                 | VSt<br>нd | Very Stiff<br>Hard | VLw            | Very Low          | 1                   | SPT<br>N | Stan     | dard Pe           | enetrometer Test<br>blows for SPT / 300mm |
| TC    |        | Tri Cone          | BUCKEL         |            | 11031                         |                   | VL        | Very Loose         | M              | Medium            |                     | VS       | Vane     | e Shear           |                                           |
| w     | В      | Wash Bo           | re             |            |                               |                   | L         | Loose              | Н              | High              |                     | А        | Acid     | Sulfate           | e Sample                                  |
|       | _      | WATER             |                |            |                               |                   | MD        | Medium Dense       | VH             | Very Hig          | า                   | PP       | Pock     | et Pen            | etrometer (kPa)                           |
|       | ▼      | Water Le          | enage          | Less       | d Pre                         |                   |           | Data               | 21/12/10       |                   |                     |          | 1        | D-1               | to: 21/01/10                              |
| 1     |        |                   |                | LORRE      | u by:                         | 10.00             |           | Date.              | ZT/TZ/TQ       | Che               | cheu Dy             | · 14/    | '        | Dat               | ·c· 21/01/12                              |

г

 Unit 3/42 Machinery Drive, Tweed Heads South
 NSW
 2486

 Ph: 0755 233 979
 Fax: 0755 233 981
 2486

### **ENGINEERING LOG – TEST PIT PROFILE**

| GPS: S: 28.235214° E:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| CLIENT: WRENN PTY LTD TEST PIT I.D. : 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | : TP 10                                                                                                          |
| PROJECT: LOT 16 (No.225) TERRANORA ROAD, BANORA POINT JOB No.: GI 395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 953-b                                                                                                            |
| EQUIPMENT TYPE: 5.5 TONNE KUBOTA BUCKET SIZE: 450mm x 2.5m PAGE: 1 of 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |
| DCP Blows     DCP Blows       Y 100mm     Test       Test     Test       Material Description     Rel. Density       Value     Material Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Structure and additional observation                                                                             |
| (CI-CH) Sandy CLAY: Medium to high plasticity, With gravel, Wet, F - FIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FILL                                                                                                             |
| Dark orange/brown St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                  |
| – – (CI-CH) Sandy CLAY: Medium to high plasticity, Trace of gravel,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RESIDUAL                                                                                                         |
| Wet, Dark orange/brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                  |
| 1.0_ (HW) BASALT: Fine grained, Very fractured, Dry, Dark grey Lw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |
| 3.0_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ES / TESTS                                                                                                       |
| Image: stress of the stress | ES / TESTS<br>(size in mm)                                                                                       |
| -       -         3.5_       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       - <t< td=""><td>ES / TESTS<br/>(size in mm)</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ES / TESTS<br>(size in mm)                                                                                       |
| Image: state of the state  | ES / TESTS<br>(size in mm)<br>e Penetrometer<br>etrometer Test                                                   |
| Image: state of the state  | ES / TESTS<br>(size in mm)<br>e Penetrometer<br>etrometer Test<br>ows for SPT / 300mm                            |
| Image: constraint of the stress of the st | ES / TESTS<br>(size in mm)<br>e Penetrometer<br>etrometer Test<br>ows for SPT / 300mm                            |
| Image: Second | ES / TESTS<br>(size in mm)<br>e Penetrometer<br>etrometer Test<br>ows for SPT / 300mm<br>sample<br>rometer (kPa) |
| Image: system of the syste  | ES / TESTS<br>(size in mm)<br>e Penetrometer<br>etrometer Test<br>ows for SPT / 300mm<br>Gample<br>rometer (kPa) |

г

 Unit 3/42 Machinery Drive, Tweed Heads South
 NSW
 2486

 Ph: 0755 233 979
 Fax: 0755 233 981
 2486

### **ENGINEERING LOG – TEST PIT PROFILE**

|                                            |                    |                                                                                                                                  |                                                                    |                           |                                                          |                                          |                                                  |                                                                                                         |                                                               | GPS:                                                                                          | S:                            | 28.235                                             | 635°                                                                 |                                                                                                         | E: 153.531748°                                                                                                    |
|--------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------|----------------------------------------------------------|------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| CL                                         | IENT:              | WREN                                                                                                                             | N PTY LT                                                           | D                         |                                                          |                                          |                                                  |                                                                                                         |                                                               |                                                                                               |                               |                                                    | TEST                                                                 | PIT I.D                                                                                                 | D.: TP 11                                                                                                         |
| PF                                         | ROJEC              | T: LOT                                                                                                                           | 16 (No.2                                                           | 25) TEF                   | RANOR                                                    | A ROA                                    | D, BANO                                          | RA POINT                                                                                                |                                                               |                                                                                               |                               |                                                    | JOB N                                                                | l <b>o.:</b> GI                                                                                         | I 3953-b                                                                                                          |
| FC                                         |                    | ΛΕΝΤ ΤΥ                                                                                                                          | PF: 5 5                                                            | TONNE                     |                                                          | Δ                                        |                                                  | BUCKET SI                                                                                               | <b>7F</b> : 450mm                                             | 1 x 3 0m                                                                                      |                               |                                                    | PAGE                                                                 | : 1 of                                                                                                  | f 1                                                                                                               |
|                                            |                    |                                                                                                                                  |                                                                    |                           |                                                          |                                          |                                                  |                                                                                                         |                                                               |                                                                                               |                               |                                                    |                                                                      |                                                                                                         | -                                                                                                                 |
| Method                                     | Water              | Depth (m)                                                                                                                        | Graphic Log                                                        |                           |                                                          |                                          | Mate                                             | erial Description                                                                                       |                                                               |                                                                                               | Consistency<br>/ Rel. Density | Test                                               | Sample /                                                             | DCP Blows<br>/ 100mm                                                                                    | Structure and additiona observation                                                                               |
| TB                                         |                    | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                      |                                                                    | (CH<br>Moi                | ) Silty CL<br>st (w>w;<br>) Silty CL<br>st (w>w;         | AY: Hig<br>), Dark<br>AY: Hig<br>), Dark | sh plastici<br>c red/brov                        | ty, With sand, Ti<br>wn<br>ty, With sand, Ti<br>d red/brown                                             | race of bould                                                 | lers,                                                                                         | VSt<br>St -<br>VSt            | PP :                                               | = 300                                                                |                                                                                                         | RESIDUAL<br>Grass roots at surface<br>Trace of organic<br>material.                                               |
|                                            |                    | -<br>3.0_<br>-<br>-<br>3.5_<br>-<br>4.0_<br>-<br>4.0_<br>-<br>-<br>4.5_                                                          |                                                                    | [ 2 8m                    |                                                          | BOIL                                     | DEP AN                                           |                                                                                                         |                                                               |                                                                                               |                               |                                                    |                                                                      |                                                                                                         |                                                                                                                   |
| <b>–</b>                                   | 111                |                                                                                                                                  |                                                                    | 1 <b>2.8M</b>             |                                                          |                                          |                                                  | CONSISTENCY / D                                                                                         |                                                               | KSTRENGT                                                                                      | 4                             |                                                    |                                                                      | SAM                                                                                                     | PLES / TESTS                                                                                                      |
| AE<br>C<br>M:<br>NM<br>RR<br>TB<br>TC<br>W | S<br>MLC<br>B<br>B | Auger Dr<br>Casing<br>Mud Sup<br>Rock Cor<br>Rock Roll<br>Toothed<br>Tri Cone<br><u>Wash Bo</u><br>WATER<br>Water Le<br>Water Se | illing<br>port<br>ing<br>er<br>Bucket<br>re<br>vel<br>vel<br>epage | EW<br>HW<br>DW<br>SW<br>F | Extrem<br>Highly<br>Distinc<br>Moder<br>Slighth<br>Fresh | nely<br>ctly<br>rately<br>y<br>JDW       | VS<br>S<br>F<br>St<br>VSt<br>Hd<br>VL<br>L<br>MD | Very Soft<br>Soft<br>Firm<br>Stiff<br>Hard<br>Very Stiff<br>Hard<br>Very Loose<br>Loose<br>Medium Dense | D<br>VD<br>Fb<br>ELw<br>VLw<br>Lw<br>M<br>H<br>VH<br>21/12/18 | Dense<br>Very Dense<br>Friable<br>Extremely<br>Very Low<br>Low<br>Medium<br>High<br>Very High | Low                           | U()<br>D<br>BS<br>DCP<br>SPT<br>N<br>VS<br>A<br>PP | Undi<br>Distu<br>Bulk<br>Dyna<br>Stan<br>Num<br>Vane<br>Acid<br>Pock | standing<br>isturbed<br>Sample<br>amic Cc<br>dard Pen<br>ber of<br>e Shear<br>Sulfate<br>set Pen<br>Dat | e<br>one Penetrometer<br>enetrometer Test<br>blows for SPT / 300mm<br>e Sample<br>etrometer (kPa)<br>te: 31/01/19 |

г

 Unit 3/42 Machinery Drive, Tweed Heads South
 NSW
 2486

 Ph: 0755 233 979
 Fax: 0755 233 981
 2486

### **ENGINEERING LOG – TEST PIT PROFILE**

|        |                                                                         |                     |                  |          |                                                              |            |            |                   |                    | GPS:                                                                     | S:      | 28.235   | 5240°                |                                      | E: 153.531027°                |  |
|--------|-------------------------------------------------------------------------|---------------------|------------------|----------|--------------------------------------------------------------|------------|------------|-------------------|--------------------|--------------------------------------------------------------------------|---------|----------|----------------------|--------------------------------------|-------------------------------|--|
| CL     | IENT:                                                                   | WREN                | N PTY LT         | D        |                                                              |            |            |                   |                    |                                                                          |         |          | TEST                 | PIT I.D                              | <b>).:</b> TP 12              |  |
| DE     |                                                                         | <b>T</b> : 10T      | 16 (No 2         | 25) TER  |                                                              |            |            |                   |                    |                                                                          |         |          |                      | <b>o</b> . C                         | l 3953-h                      |  |
|        |                                                                         | 1. LOT              | 10 (110.2        | 23) 1210 |                                                              |            | D, DANO    |                   |                    |                                                                          |         |          |                      |                                      |                               |  |
| EC     | QUIPN                                                                   | IENT TY             | ' <b>PE:</b> 5.5 | FONNE I  | KUBOT                                                        | A          |            | BUCKET S          | I <b>ZE:</b> 400mm | x 1.0m                                                                   |         |          | PAGE                 | : 1 of                               | f 1                           |  |
| Method | Water                                                                   | Depth (m)           | Graphic Log      |          | Material Description                                         |            |            |                   |                    | Consistency<br>/ Rel. Density                                            | Test    | Sample / | DCP Blows<br>/ 100mm | Structure and additional observation |                               |  |
| Ξ      |                                                                         | _                   |                  | (CI-CI   | H) Sand                                                      | y Silty    | CLAY: Me   | dium to high pla  | asticity, Dry (    | w <wp),< td=""><td></td><td></td><td></td><td></td><td>FILL</td></wp),<> |         |          |                      |                                      | FILL                          |  |
| в      |                                                                         | _<br>0.5_<br>_      |                  | Red/I    |                                                              |            |            |                   |                    |                                                                          |         |          |                      |                                      |                               |  |
|        |                                                                         | 1.0_<br>_<br>_<br>_ |                  |          |                                                              |            |            |                   |                    |                                                                          |         |          |                      |                                      |                               |  |
|        |                                                                         | 1.5_<br>-<br>-<br>- |                  |          |                                                              |            |            |                   |                    |                                                                          |         |          |                      |                                      |                               |  |
|        |                                                                         | 2.0_                |                  |          |                                                              |            |            |                   |                    |                                                                          |         |          |                      |                                      |                               |  |
|        |                                                                         | _                   |                  | Bould    | ders and                                                     | d cobb     | les (crush | ed and angular)   |                    |                                                                          |         |          |                      |                                      |                               |  |
|        |                                                                         | -                   |                  |          |                                                              |            |            |                   |                    |                                                                          |         |          |                      |                                      |                               |  |
|        |                                                                         | 2.5_<br>-<br>-<br>- |                  |          |                                                              |            |            |                   |                    |                                                                          |         |          |                      |                                      |                               |  |
|        |                                                                         | 3.0_                |                  |          |                                                              |            |            |                   |                    |                                                                          |         |          |                      |                                      |                               |  |
|        |                                                                         |                     |                  |          |                                                              |            |            |                   |                    |                                                                          |         |          |                      |                                      |                               |  |
|        |                                                                         | -                   |                  |          |                                                              |            |            |                   |                    |                                                                          |         |          |                      |                                      |                               |  |
|        |                                                                         | 3.5_                |                  |          |                                                              |            |            |                   |                    |                                                                          |         |          |                      |                                      |                               |  |
|        |                                                                         | _                   |                  |          |                                                              |            |            |                   |                    |                                                                          |         |          |                      |                                      |                               |  |
|        |                                                                         | -                   |                  |          |                                                              |            |            |                   |                    |                                                                          |         |          |                      |                                      |                               |  |
|        |                                                                         | 4.0_                |                  |          |                                                              |            |            |                   |                    |                                                                          |         |          |                      |                                      |                               |  |
|        |                                                                         | -                   |                  |          |                                                              |            |            |                   |                    |                                                                          |         |          |                      |                                      |                               |  |
|        |                                                                         | _                   |                  |          |                                                              |            |            |                   |                    |                                                                          |         |          |                      |                                      |                               |  |
|        |                                                                         |                     |                  |          |                                                              |            |            |                   |                    |                                                                          |         |          |                      |                                      |                               |  |
| TP     | TP 12 TERMINATED AT 2.9m – LIMIT OF EXCAVATION DUE TO CONTINUAL CAVE IN |                     |                  |          |                                                              |            |            |                   |                    |                                                                          |         |          |                      |                                      |                               |  |
| F      | N                                                                       | /ETHOD              |                  | WEA      | THERIN                                                       | IG         | (          | CONSISTENCY / D   | ENSITY / ROC       | K STRENGT                                                                | ГН      |          |                      | SAM                                  | PLES / TESTS                  |  |
| AD     | )                                                                       | Auger Dr            | illing           | EW       | Extrem                                                       | nely       | VS         | Very Soft         | D                  | Dense                                                                    |         | U()      | Und                  | isturbe                              | d (size in mm)                |  |
| С      | -                                                                       | Casing              |                  | HW       | Highly                                                       |            | S          | Soft              | VD                 | Very Den                                                                 | se      | D        | Distu                | urbed                                |                               |  |
| M      | S                                                                       | Mud Sup             | port             |          | Distinc                                                      | tly        | F<br>C+    | Firm<br>Stiff     | Fb                 | Friable                                                                  |         | BS       | Bulk                 | Sampl                                | e<br>Denotromator             |  |
|        | VILC                                                                    | ROCK COR            | ing<br>Ier       | SW/      | Slighth                                                      | atery<br>/ | St<br>VSt  | Sun<br>Verv Stiff | ELW<br>VI w        | Verv Low                                                                 | y LOW   | SPT      | Uyna<br>Stan         | dard P                               | enetrometer Test              |  |
| TB     |                                                                         | Toothed             | Bucket           | F        | Slightly VSt Very Stiff VLw Very Low<br>Fresh Hd Hard Iw Low |            |            |                   |                    |                                                                          | N       | Num      | ber of               | blows for SPT / 300mm                |                               |  |
| тс     |                                                                         | Tri Cone            |                  |          |                                                              |            | VL         | Very Loose        | М                  | Medium                                                                   |         | VS       | Vane                 | e Shear                              | · · · · · · · · · · · · · · · |  |
| W      | В                                                                       | Wash Bo             | re               |          |                                                              |            | L          | Loose             | Н                  | High                                                                     |         | А        | Acid                 | Sulfate                              | e Sample                      |  |
|        |                                                                         | WATER               |                  |          |                                                              |            | MD         | Medium Dense      | VH                 | Very High                                                                | ı       | PP       | Pock                 | et Pen                               | etrometer (kPa)               |  |
| 1      | •                                                                       | Water Le            | evel             |          |                                                              |            |            | Γ                 |                    |                                                                          |         |          |                      | 1                                    |                               |  |
|        | •                                                                       | Water Se            | eepage           | Logged   | l By:                                                        | JDW        |            | Date:             | 21/12/18           | Chee                                                                     | ked By: | IN IN    | V                    | Dat                                  | <b>te:</b> 31/01/19           |  |

 Unit 3/42 Machinery Drive, Tweed Heads South
 NSW
 2486

 Ph: 0755 233 979
 Fax: 0755 233 981
 2486

### **ENGINEERING LOG – TEST PIT PROFILE**

|          |          |                       |             |              |                                                                                |                 |                       |                              |                               | GPS:                 | 5:        | 28.235               | 237                                  |                    | <b>E:</b> 153.530449           |
|----------|----------|-----------------------|-------------|--------------|--------------------------------------------------------------------------------|-----------------|-----------------------|------------------------------|-------------------------------|----------------------|-----------|----------------------|--------------------------------------|--------------------|--------------------------------|
| CL       | LIENT    | : WREN                | N PTY LT    | D            |                                                                                |                 |                       |                              |                               |                      |           |                      | TEST                                 | PIT I.D            | .: TP 13                       |
| PF       | ROJEC    | <b>T</b> : LOT        | 16 (No.2    | 25) TEI      | RANOR                                                                          | A ROA           | D, BAN                | ORA POINT                    |                               |                      |           |                      | JOB N                                | <b>lo.:</b> GI     | 3953-b                         |
| EC       |          | AENT TY               | PE: 5.5     | TONNE        |                                                                                | A               |                       | BUCKET S                     | <b>ZE:</b> 450mm              | 1 x 3.5m             |           |                      | PAGE                                 | : 1 of             | <sup>;</sup> 1                 |
|          | Ì        |                       |             |              |                                                                                |                 |                       |                              |                               |                      |           |                      | _                                    | -                  |                                |
| Method   | Water    | Depth (m)             | Graphic Log |              | Material Description                                                           |                 |                       |                              | Consistency<br>/ Rel. Density | Test                 | Sample /  | DCP Blows<br>/ 100mm | Structure and additional observation |                    |                                |
| ТВ       |          |                       |             | (GC<br>thro  | ) Clayey (<br>oughout,                                                         | GRAVE<br>Moist, | L: Fine t<br>, Grey/b | to coarse gravel, \<br>rown  | With sand, Co                 | obbles               | L -<br>MD |                      |                                      |                    | FILL                           |
|          |          | -                     |             |              |                                                                                |                 |                       |                              |                               |                      |           |                      |                                      |                    |                                |
|          |          | 0.5_                  |             |              |                                                                                |                 |                       |                              |                               |                      |           |                      |                                      |                    |                                |
|          |          | -                     |             |              |                                                                                |                 |                       |                              |                               |                      |           |                      |                                      |                    |                                |
|          |          | -                     |             | (GP          | ) Sandy (                                                                      | GRAVE           | L: Fine to            | o coarse gravel, V           | vith cobbles                  |                      |           |                      |                                      |                    |                                |
|          |          |                       |             | thro         | oughout,                                                                       | Dry, G          | irey                  |                              |                               |                      |           |                      |                                      |                    |                                |
|          |          | 1.0_                  |             |              |                                                                                |                 |                       |                              |                               |                      |           |                      |                                      |                    |                                |
|          |          | _                     |             |              |                                                                                |                 |                       |                              |                               |                      |           |                      |                                      |                    |                                |
|          |          | -                     |             |              |                                                                                |                 |                       |                              |                               |                      |           |                      |                                      |                    |                                |
|          |          | 1.5_                  |             |              |                                                                                |                 |                       |                              |                               |                      |           |                      |                                      |                    |                                |
|          |          | -                     |             | (CI)         | Sandy Cl                                                                       | LAY: M          | ledium p              | plasticity, Fine to          | coarse sand,                  | With                 | St -      |                      |                                      |                    |                                |
|          |          | -                     |             | grav         | /ei, iviois                                                                    | t, Dark         | rea/bro               | own and orange/              | brown                         |                      | vst       |                      |                                      |                    |                                |
|          |          |                       |             |              |                                                                                |                 |                       |                              |                               |                      |           |                      |                                      |                    |                                |
|          |          | 2.0_                  |             |              |                                                                                |                 |                       |                              |                               |                      |           |                      |                                      |                    |                                |
|          |          | _                     |             | (CI)         | (CI) Silty CLAY: Medium plasticity, With sand, Moist (w≈w <sub>p</sub> ), Dark |                 |                       |                              |                               |                      |           |                      |                                      | RESIDUAL           |                                |
|          |          | -                     |             | red          | ed/brown and dark orange/brown                                                 |                 |                       |                              |                               |                      |           |                      |                                      |                    |                                |
|          |          | 2.5_                  |             |              |                                                                                |                 |                       |                              |                               |                      |           |                      |                                      |                    |                                |
|          |          | -                     |             |              |                                                                                |                 |                       |                              |                               |                      |           |                      |                                      |                    |                                |
|          |          | -                     |             |              |                                                                                |                 |                       |                              |                               |                      |           |                      |                                      |                    |                                |
|          |          |                       |             |              |                                                                                |                 |                       |                              |                               |                      |           |                      |                                      |                    |                                |
|          |          | 3.0_                  |             |              |                                                                                |                 |                       |                              |                               |                      |           |                      |                                      |                    |                                |
|          |          | _                     |             |              |                                                                                |                 |                       |                              |                               |                      |           |                      |                                      |                    |                                |
|          |          | -                     |             |              |                                                                                |                 |                       |                              |                               |                      |           |                      |                                      |                    |                                |
|          |          | 3.5_                  |             |              |                                                                                |                 |                       |                              |                               |                      |           |                      |                                      |                    |                                |
|          |          | -                     |             |              |                                                                                |                 |                       |                              |                               |                      |           |                      |                                      |                    |                                |
|          | 1        | -                     |             |              |                                                                                |                 |                       |                              |                               |                      |           |                      |                                      |                    |                                |
|          | 1        |                       |             |              |                                                                                |                 |                       |                              |                               |                      |           |                      |                                      |                    |                                |
|          | 1        | 4.0_                  |             |              |                                                                                |                 |                       |                              |                               |                      |           |                      |                                      |                    |                                |
|          |          | _                     |             |              |                                                                                |                 |                       |                              |                               |                      |           |                      |                                      |                    |                                |
|          | 1        | -                     |             |              |                                                                                |                 |                       |                              |                               |                      |           |                      |                                      |                    |                                |
|          |          | 4.5_                  |             |              |                                                                                |                 |                       |                              |                               |                      |           |                      |                                      |                    |                                |
| TF       | P 13 T   | ERMIN                 | ATED A      | <b>2.8</b> m |                                                                                |                 | VESTI                 | GATION                       |                               |                      |           |                      |                                      |                    |                                |
| AD       | ו<br>כ   | VIE I HOD<br>Auger Di | rilling     | EW           | Extren:                                                                        | iG<br>nely      | VS                    | CONSISTENCY / D<br>Very Soft | ENSITY / ROC<br>D             | Dense                | Н         | U()                  | Und                                  | SAMI<br>isturbe    | PLES / TESTS<br>d (size in mm) |
| С        | ~        | Casing                |             | HW           | Highly                                                                         |                 | S                     | Soft                         | VD                            | Very Dens            | e         | D                    | Dist                                 | urbed              | -                              |
| M        | s<br>Mlc | Mud Sup<br>Rock Cor   | port<br>ing | DW<br>MW     | Distinc<br>Moder                                                               | rtiy<br>ratelv  | ⊦<br>St               | ⊦ırm<br>Stiff                | Fb<br>ELw                     | Friable<br>Extremelv | Low       | BS<br>DCP            | Bulk<br>Dvna                         | sample<br>amic Co  | e<br>one Penetrometer          |
| RF       | 2        | Rock Rol              | ler         | SW           | W Slightly VSt Very Stiff VLw Very Lov                                         |                 |                       |                              |                               | Very Low             |           | SPT                  | Stan                                 | dard Pe            | enetrometer Test               |
| TB<br>TC | 3        | Toothed               | Bucket      | F            | Fresh                                                                          |                 | Hd<br>VI              | Hard<br>Very Loose           | Lw<br>M                       | Low<br>Medium        |           | N<br>VS              | Num<br>Van                           | iber of<br>e Shear | blows for SPT / 300mm          |
| W        | B        | Wash Bo               | ore         |              |                                                                                |                 | L                     | Loose                        | Н                             | High                 |           | A                    | Acid                                 | Sulfate            | e Sample                       |
|          | -        | WATER                 |             |              |                                                                                |                 | MD                    | Medium Dense                 | VH                            | Very High            |           | PP                   | Pock                                 | ket Pen            | etrometer (kPa)                |
|          | •        | Water Se              | eepage      | Logge        | ed By:                                                                         | JDW             |                       | Date:                        | 21/12/18                      | Chec                 | ked By:   |                      | /                                    | Dat                | te: 31/01/19                   |

г

 Unit 3/42 Machinery Drive, Tweed Heads South
 NSW
 2486

 Ph: 0755 233 979
 Fax: 0755 233 981
 2486

### **ENGINEERING LOG – TEST PIT PROFILE**

|          |                                                                                                                                                                                                                   |                      |            |         |                                                                           |       |          |                     |                       | GPS:               | S:                         | 28.235       | 516°               |                             | E: 153.529928°                       |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|---------|---------------------------------------------------------------------------|-------|----------|---------------------|-----------------------|--------------------|----------------------------|--------------|--------------------|-----------------------------|--------------------------------------|--|
| CI       | LIENT                                                                                                                                                                                                             | : WREN               | N PTY L1   | D       |                                                                           |       |          |                     |                       |                    |                            |              | TEST I             | PIT I.D                     | <b>.</b> : TP 14                     |  |
| Ы        | ROJE                                                                                                                                                                                                              | CT: LOT              | 16 (No.2   | 25) TEI | RRANOR                                                                    | A ROA | D, BANO  | RA POINT            |                       |                    |                            |              | JOB No.: GI 3953-b |                             |                                      |  |
| E        | OUIPI                                                                                                                                                                                                             | MENT TY              | 'PE: 5.5   | TONNE   | КИВОТ                                                                     | A     |          | BUCKET S            | IZE: 450mm            | 1                  |                            |              | PAGE               | : 1 of                      | <sup>-</sup> 1                       |  |
| -        | Ì                                                                                                                                                                                                                 |                      | ے<br>ا     |         |                                                                           |       |          |                     |                       |                    | / R C                      |              | (0                 |                             |                                      |  |
| Method   | Water                                                                                                                                                                                                             | bepth (m)            | raphic Log |         | Material Description                                                      |       |          |                     |                       |                    | onsistency<br>tel. Density | Test         | sample /           | CP Blows<br>/ <u>100</u> mm | Structure and additional observation |  |
| ТВ       |                                                                                                                                                                                                                   | -                    |            | (CI)    | (CI) Silty CLAY: Medium plasticity, Trace of sand and cobbles and         |       |          |                     |                       |                    |                            |              |                    |                             | RESIDUAL                             |  |
|          |                                                                                                                                                                                                                   | -                    |            |         | ,                                                                         |       |          |                     |                       |                    |                            |              |                    |                             |                                      |  |
|          |                                                                                                                                                                                                                   | 0.5                  |            |         |                                                                           |       |          |                     |                       |                    |                            |              |                    |                             |                                      |  |
|          |                                                                                                                                                                                                                   | 0.5_                 |            |         |                                                                           |       |          |                     |                       |                    |                            |              |                    |                             |                                      |  |
|          |                                                                                                                                                                                                                   | _                    |            |         |                                                                           |       |          |                     |                       |                    |                            |              |                    |                             |                                      |  |
|          |                                                                                                                                                                                                                   | -                    |            |         |                                                                           |       |          |                     |                       |                    |                            |              |                    |                             |                                      |  |
|          |                                                                                                                                                                                                                   | 1.0_                 |            |         |                                                                           |       |          |                     |                       |                    |                            |              |                    |                             |                                      |  |
|          |                                                                                                                                                                                                                   | -                    |            |         |                                                                           |       |          |                     |                       |                    |                            |              |                    |                             |                                      |  |
|          |                                                                                                                                                                                                                   | -                    |            |         |                                                                           |       |          |                     |                       |                    |                            |              |                    |                             |                                      |  |
|          |                                                                                                                                                                                                                   | 1 -                  |            |         |                                                                           |       |          |                     |                       |                    |                            |              |                    |                             |                                      |  |
|          |                                                                                                                                                                                                                   | 1.5_                 |            |         |                                                                           |       |          |                     |                       |                    |                            |              |                    |                             |                                      |  |
|          |                                                                                                                                                                                                                   | _                    |            |         |                                                                           |       |          |                     |                       |                    |                            |              |                    |                             |                                      |  |
|          |                                                                                                                                                                                                                   | -                    |            |         |                                                                           |       |          |                     |                       |                    |                            |              |                    |                             |                                      |  |
|          |                                                                                                                                                                                                                   | 2.0_                 |            |         |                                                                           |       |          |                     |                       |                    |                            |              |                    |                             |                                      |  |
|          |                                                                                                                                                                                                                   | -                    |            |         |                                                                           |       |          |                     |                       |                    |                            |              |                    |                             |                                      |  |
|          |                                                                                                                                                                                                                   | -                    |            |         |                                                                           |       |          |                     |                       |                    |                            |              |                    |                             |                                      |  |
|          |                                                                                                                                                                                                                   | 2.5                  |            |         |                                                                           |       |          |                     |                       |                    |                            |              |                    |                             |                                      |  |
|          |                                                                                                                                                                                                                   | 2.5_                 |            |         |                                                                           |       |          |                     |                       |                    |                            |              |                    |                             |                                      |  |
|          |                                                                                                                                                                                                                   | _                    |            |         |                                                                           |       |          |                     |                       |                    |                            |              |                    |                             |                                      |  |
|          |                                                                                                                                                                                                                   | -                    |            |         |                                                                           |       |          |                     |                       |                    |                            |              |                    |                             |                                      |  |
|          |                                                                                                                                                                                                                   | 3.0_                 |            |         |                                                                           |       |          |                     |                       |                    |                            |              |                    |                             |                                      |  |
|          |                                                                                                                                                                                                                   | -                    |            |         |                                                                           |       |          |                     |                       |                    |                            |              |                    |                             |                                      |  |
|          |                                                                                                                                                                                                                   | -                    |            |         |                                                                           |       |          |                     |                       |                    |                            |              |                    |                             |                                      |  |
|          |                                                                                                                                                                                                                   | 25                   |            |         |                                                                           |       |          |                     |                       |                    |                            |              |                    |                             |                                      |  |
|          |                                                                                                                                                                                                                   | 3.5_                 |            |         |                                                                           |       |          |                     |                       |                    |                            |              |                    |                             |                                      |  |
|          |                                                                                                                                                                                                                   | -                    |            |         |                                                                           |       |          |                     |                       |                    |                            |              |                    |                             |                                      |  |
|          |                                                                                                                                                                                                                   | -                    |            |         |                                                                           |       |          |                     |                       |                    |                            |              |                    |                             |                                      |  |
|          |                                                                                                                                                                                                                   | 4.0_                 |            |         |                                                                           |       |          |                     |                       |                    |                            |              |                    |                             |                                      |  |
|          |                                                                                                                                                                                                                   | -                    |            |         |                                                                           |       |          |                     |                       |                    |                            |              |                    |                             |                                      |  |
|          |                                                                                                                                                                                                                   | -                    |            |         |                                                                           |       |          |                     |                       |                    |                            |              |                    |                             |                                      |  |
|          |                                                                                                                                                                                                                   | 45                   |            |         |                                                                           |       |          |                     |                       |                    |                            |              |                    |                             |                                      |  |
| Т        | TP 14 TERMINATED AT 2.4m – LIMIT OF INVESTIGATION                                                                                                                                                                 |                      |            |         |                                                                           |       |          |                     |                       |                    |                            |              |                    |                             |                                      |  |
|          |                                                                                                                                                                                                                   | METHOD               | illing     | WI      | EATHERIN                                                                  | NG    | (<br>)/5 | CONSISTENCY / D     | DENSITY / ROC         |                    | ł                          | 11()         | 11-1               | SAM                         | PLES / TESTS                         |  |
| AL<br>C  | AD         Auger Drilling         EW         Extremely         VS         Very Soft         D         Dense           C         Casing         HW         Highly         S         Soft         VD         Verv D |                      |            |         | Very Dense                                                                | e     | D        | Distu               | urbed                 | ים נאצפ ווו וחווח) |                            |              |                    |                             |                                      |  |
| M        | IS                                                                                                                                                                                                                | Mud Sup              | port       |         | Disting                                                                   | ctly  | F<br>St  | Firm<br>Stiff       | Fb                    | Friable            |                            | BS           | Bulk               | Sample                      | e<br>Denetromotor                    |  |
| NI<br>RF | VILC<br>R                                                                                                                                                                                                         | Rock Cor<br>Rock Rol | ing<br>ler | SW      | / Moderately St Stiff ELw Extreme<br>Slightly VSt Very Stiff VLw Very Low |       |          |                     | Extremely<br>Very Low | LOW                | SPT                        | Dyna<br>Stan | dard Pe            | enetrometer Test            |                                      |  |
| TE       | 3                                                                                                                                                                                                                 | Toothed              | Bucket     | F       | Fresh                                                                     |       | Hd       | Hard                | Lw                    | Low                |                            | N            | Num                | ber of                      | blows for SPT / 300mm                |  |
|          | C<br>/R                                                                                                                                                                                                           | Tri Cone             | re         |         |                                                                           |       | VL<br>L  | Very Loose<br>Loose | M<br>H                | Medium<br>High     |                            | VS<br>A      | Vane<br>Acid       | e Shear<br>Sulfate          | e Sample                             |  |
| vv       | U                                                                                                                                                                                                                 | WATER                |            |         | MD Medium Dense VH Very High PP Pocket Penetrometer (kPa)                 |       |          |                     |                       |                    |                            |              |                    |                             |                                      |  |
|          | •                                                                                                                                                                                                                 | Water Le             | evel       |         |                                                                           |       |          | 1                   |                       |                    |                            |              |                    |                             |                                      |  |
| 1 '      |                                                                                                                                                                                                                   | water Se             | epage      | Logge   | ed By:                                                                    | JDW   |          | Date:               | 21/12/18              | Check              | ced By:                    | JN           | /                  | Dat                         | te: 31/01/19                         |  |



APPENDIX C

### **GEOTECHNICAL REPORT STANDARD NOTES**





**SCOPE** These standard notes may be of assistance when understanding terms and recommendations given in this report. These notes are for general conditions and not all terms given may be of concern to the report attached. The descriptive terms adopted by Geotech Investigations Pty Ltd are given below and are largely consistent with Australian Standards AS1726-1993 'Geotechnical Site Investigations'.

**CLIENT** can be described and is limited to the financier of this geotechnical investigation.

**LEGALITY** and privacy of this document is based on communication between Geotech Investigations Pty Ltd and the client. Unless indicated otherwise the report was prepared specifically for the client involved and for the purposes indicated by the client. Use by any other party for any purpose, or by the client for a different purpose, will result in recommendations becoming invalid and Geotech Investigations Pty Ltd will hold no responsibility for problems which may arise.

**GEOTECHNICAL REPORTS** are predominantly derived using professional estimates determined from the results of fieldwork, in-situ and laboratory testing and experience from previous investigations in the area, from which geotechnical engineers then formulate an opinion about overall subsurface conditions. The client must be made aware that the investigations are undertaken to ensure minimal site impact using test-pits or small diameter boreholes and soil conditions on-site may vary from those encountered during the investigation.

**CLIENTS RESPONSIBILITY** to notify this office should there be adjustments in proposed structure/location or inconsistencies with material descriptions given in this report and those encountered on site. Geotech Investigations Pty Ltd is able to provide a range of services from on-site inspections to full project supervision to confirm recommendations given in the report.

**CSIRO** Publication BTF 18 'Foundation Maintenance and Footing Performance: A Homeowner's Guide' explains how to adequately maintain drainage during and post construction which lies as the responsibility of the client. Suitable drainage ensures recommendations given in this report remain valid.

**INVESTIGATION METHODS** adopted by Geotech Investigations Pty Ltd are designed to incorporate individual project-specific factors to obtain information on the physical properties of soil and rock around a site to design earthworks and foundations for proposed structures. The following methods of investigation currently adopted by this company are summarised below:-

**HAND AUGER** – investigations enable field work to be undertaken where access is limited. The materials must have sufficient cohesion to stand unsupported in an unlined borehole and there must be no large cobbles boulders or other obstructions which would prevent rotation of the auger.

**TEST-PITS** – investigations are carried out with an excavator or backhoe, allowing a visual inspection of sub-surface material in-situ and from samples removed. The limit of investigation is restricted by the reach of the excavator or backhoe.

**CONTINUOUS SPIRAL FLIGHT AUGERING TECHNIQUES** – investigations are advanced by pushing a 100mm diameter spiral into the sub-surface and withdrawing it at regular intervals to allow sampling or testing as it emerges.

**WASH BORING** – investigations are advanced by removing the loosened soil from the borehole by a stream of water or drilling mud issuing from the lower end of the wash pipe which is worked up and down or rotated by hand in the borehole. The water or mud carries the soil up the borehole where it overflows at ground level where the soil in suspension is allowed to settle in a pond or tank and the fluid is re-circulated or discharged to waste as required.

**NON-CORE ROTARY DRILLING** – investigations are advanced using a rotary bit with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from feel and rate of penetration.

**ROTARY MUD DRILLING** – is carried out as above using mud as support and circulating fluid for the borehole drilling. The mud tends to mask the cuttings and reliable identification is again only possible from separate intact sampling.

**CONTINUOUS CORE DRILLING** – investigations are carried out in rock material, specimens of rock in the form of cylindrical cores are recovered from the drill holes by the means of core barrel. The core barrel is provided at its lower end with a detachable core bit which carries industrial diamond chips in a matrix of metal. Rotation of the barrel by means of the drill rods causes the core bit to cut an annulus in the rock, the cuttings being washed to the surface by a stream of pumped down the hollow drill rods.



TESTING METHODS adopted by Geotech Investigations Pty Ltd to determine soil properties include but not limited to the following:-

U50 – Undisturbed samples are obtained by inserting a 50mm diameter thin-walled steel tube into the material and withdrawing with a sample of the soil in a moderately undisturbed condition.

PP – Pocket Penetrometer tests are commonly used on thin walled tube samples of cohesive soils to evaluate consistency and approximate unconfined compressive strength of saturated cohesive soils. They may also be used for the same purpose in freshly excavated trenches.

VS – Vane Shear test are commonly used in-situ or on thin walled tube samples of cohesive soils by introducing the vane into the material where the measurement of the undrained shear strength is required. Then the vane is rotated and the torsional force required to cause shearing is calculated.

DCP – Dynamic Cone Penetrometer tests are commonly used in-situ to measure the strength attributes of penetrability and compaction of sub-surface materials.

SPT – Standard Penetration Tests are commonly used to determine the density of granular deposits but are occasionally used in cohesive material as a means of determining strength and also of obtaining a relatively unmixed sample. Samples and results are obtained by driving a 50mm diameter split tube through blows from a slide hammer with a weight of 63.5kg falling through a distance of 760mm. Blow counts are recorded for 150mm intervals with the sum of the number of blows required for the second and third 150mm of penetration is termed the "standard penetration resistance" or the "N-value".

GEOLOGICAL ORIGINS of sub-surface material plays a considerable role in the development of engineering parameters and have been summarised as follows:-

FILL – materials are man made deposits, which may be significantly more variable between test locations than naturally occurring soils.

**RESIDUAL** – soils are present in a region because of weathering over the geological time scale.

**COLLUVIAL** – soils have been deposited recently, on the geological time scale, as soils being transported slowly down slope due to gravitational creep.

ALLUVIAL – soils have been deposited recently, on the geological time scale, as water borne materials.

AEOLIAN - soils have been deposited recently, on the geological time scale, as wind borne materials.

SOIL DESCRIPTION is based on an assessment of disturbed samples, as recovered from boreholes and excavations, and from undisturbed materials. Soil descriptions adopted by Geotech Investigations Pty Ltd are largely consistent with AS 1726-2017 'Geotechnical Site Investigation'. Soil types are described according to the predominating particle size and behaviour, qualified by the grading of other particles present on the following bases detailed in Table 1.

COHESIVE SOILS ability to hold moisture known as its liquid limit is the state of a soil when it goes from a solid state to a liquid state described in Table 2

| TABLE 1             |                 | TABLE 2              | TABLE 2                 |  |  |  |  |  |  |
|---------------------|-----------------|----------------------|-------------------------|--|--|--|--|--|--|
| Soil Classification | Particle Size   | Descriptive Type     | Range of Liquid Limit % |  |  |  |  |  |  |
| Clay                | < 0.002 mm      | Of low plasticity    | ≤ 35                    |  |  |  |  |  |  |
| Silt                | 0.002 – 0.06 mm | Of medium plasticity | > 35 ≤ 50               |  |  |  |  |  |  |
| Sand                | 0.06 – 2.00 mm  | Of high plasticity   | > 50                    |  |  |  |  |  |  |
| Gravel              | 2.00 – 60.0 mm  |                      |                         |  |  |  |  |  |  |

Furthermore to soil description cohesive soils are described on their strength (assessed in conjunction with penetration tests) and liquid limit. Non-cohesive soil strengths are described by their density index. With descriptions for cohesive and non-cohesive soils summarised in Table 3.

| TABLE 3 |  |
|---------|--|
|---------|--|

\_....

|            | COHESIVE SOILS               | NON-COHESIVE SOILS |                 |  |  |  |
|------------|------------------------------|--------------------|-----------------|--|--|--|
| Term       | Undrained Shear Strength kPa | Term               | Density Index % |  |  |  |
| Very soft  | ≤ 12                         | Very Loose         | ≤15             |  |  |  |
| Soft       | > 12 ≤25                     | Loose              | > 15 ≤35        |  |  |  |
| Firm       | > 25 ≤50                     | Medium Dense       | > 35 ≤65        |  |  |  |
| Stiff      | > 50 ≤100                    | Dense              | > 65 ≤85        |  |  |  |
| Very Stiff | > 100 ≤200                   | Very Dense         | > 85            |  |  |  |
| Hard       | > 200                        |                    |                 |  |  |  |



Description of terms used to describe material portion are summarised in Table 4.

| TABLE 4 |                               |                    |                                 |  |  |  |
|---------|-------------------------------|--------------------|---------------------------------|--|--|--|
|         | COARSE GRAINIED SOILS         | FINE GRAINED SOILS |                                 |  |  |  |
| % Fines | Modifier                      | % Coarse           | Modifier                        |  |  |  |
| ≤ 5     | Omit or 'trace'               | ≤ 15               | Omit or 'trace'                 |  |  |  |
| > 5 ≤12 | Describe as 'with'            | > 15 ≤30           | Describe as 'with'              |  |  |  |
| > 12    | Prefix soil as 'silty/clayey' | > 30               | Prefix soil as 'sandy/gravelly' |  |  |  |

**ROCK DESCRIPTIONS** are determined from disturbed samples or specimens collected during field investigations. A rocks presence of defects and the effects of weathering are likely to have a great influence on engineering behaviour.

Rock Material Weathering Classification is summarised in Table 5.

| TABLE 5                      |        |                                                                                                                                                                                                                                     |
|------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Term                         | Symbol | Definition                                                                                                                                                                                                                          |
| Residual Soils               | -      | Soil developed on extremely weathered rock; the mass structure and substance fabric are no longer evident; there is a large change in volume but the soil has not been significantly transported                                    |
| Extremely                    | XW     | Rock is weathered to such an extent that it has 'soil' properties, i.e. it                                                                                                                                                          |
| Weathered Rock               |        | either disintegrates or can be remoulded, in water                                                                                                                                                                                  |
| Distinctly<br>Weathered Rock | DW     | Rock strength usually changed by weathering. The rock may be highly<br>discoloured, usually by iron staining. Porosity may be increased by<br>leaching, or may be decreased due to decomposition of weathering<br>products in pores |
| Slightly Weathered           | SW     | Rock is slightly discoloured but shows little or no change of strength from                                                                                                                                                         |
| Rock                         |        | fresh rock                                                                                                                                                                                                                          |
| Fresh rock                   | FR     | Rock shows no signs of decomposition or staining                                                                                                                                                                                    |

Rock Material Strength Classification is summarised in Table 6.

| TABLE 6           |        |                                                |                                                                                                                                                                                                                                                                                   |
|-------------------|--------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Term              | Symbol | Point load<br>index (MPa)<br>I <sub>s</sub> 50 | Field guide to strength                                                                                                                                                                                                                                                           |
| Extremely<br>Low  | EL     | ≤0.03                                          | Easily remoulded by hand to a material with soil properties                                                                                                                                                                                                                       |
| Very Low          | VL     | >0.03 ≤0.1                                     | Material crumbles under firm blows with sharp end of pick; can<br>be peeled with knife; too hard to cut a triaxial sample by hand.<br>Pieces up to 3cm thick can be broken by finger pressure                                                                                     |
| Low               | L      | >0.1 ≤0.3                                      | Easily scored with a knife; indentations 1mm to 3mm show in the<br>specimen with firm blows of the pick point; has dull sound under<br>hammer. A piece of core 150mm long 50mm diameter may be<br>broken by hand. Sharp edges of core may be friable and break<br>during handling |
| Medium            | М      | >0.3 ≤1.0                                      | Readily scored with a knife; a piece of core 150mm long by 50mm diameter can be broken by hand with difficulty                                                                                                                                                                    |
| High              | Н      | >1.0 ≤3.0                                      | A piece of core 150mm long by 50mm diameter cannot be<br>broken by hand but can be broken by a pick with a single firm<br>blow; rock rings under hammer                                                                                                                           |
| Very High         | VH     | >3.0 ≤10                                       | Hand specimen breaks with pick after more than one blow; rock rings under hammer                                                                                                                                                                                                  |
| Extremely<br>High | EH     | >10                                            | Specimen requires many blows with geological pick to break through intact material; rock rings under hammer                                                                                                                                                                       |



Rock Material Defect Shapes are summarised in Table 7.

| Term       | Description                                      |  |  |  |
|------------|--------------------------------------------------|--|--|--|
| Planar     | The defect does not vary in orientation.         |  |  |  |
| Curved     | The defect has a gradual change in orientation   |  |  |  |
| Undulating | The defect has a wavy surface                    |  |  |  |
| Stepped    | The defect has one or more well defined steps.   |  |  |  |
| Irregular  | The defect has many sharp changes of orientation |  |  |  |
| Smooth     | The defect has a flat even finish                |  |  |  |
| Rough      | The defect has a irregular disoriented finish    |  |  |  |
|            |                                                  |  |  |  |

### TABLE 7

Rock Material Texture and Fabric are summarised in Table 8.

| TABLE 8     |                                                                                                        |                                                  |                                                                                                                      |
|-------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Geological  | Mass                                                                                                   | ive                                              | Layered                                                                                                              |
| Description |                                                                                                        |                                                  | (Bedded foliate cleaved)                                                                                             |
| Diagram     |                                                                                                        |                                                  |                                                                                                                      |
| Fabric Type | Effectively homogenous<br>and isotropic. Bulky or equi-<br>dimensional grains<br>uniformly distributed | Effectively homogeneous and isotropic. Elongated | Effective homogeneous with<br>planar anisotropy. Elongated or<br>tabular grains or pores in a<br>layered arrangement |

#### Rock Material Defect Type is summarised in Table 9

| TABLE 9          |                                                                                                                                                                                                                                                                                                                                                                                         |         |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Term             | Definition                                                                                                                                                                                                                                                                                                                                                                              | Diagram |
| Bedding          | Signifying existence of beds or laminate. Planes dividing sedimentary rocks of<br>the same or different lithology. Structure occurring in granite and similar rocks<br>evident in a tendency to split more or less horizontally to the land surface                                                                                                                                     |         |
| Cross<br>Bedding | Also called cross-lamination or false bedding. The structure commonly<br>present in granular sedimentary rocks, which consists of tabular, irregularly<br>lenticular or wedge-shaped bodies lying essentially parallel to the general<br>stratification and which them selves show pronounced lamination structure in<br>which the laminae are steeply inclined to the general bedding. |         |
| Crushed<br>Seam  | A fracture at a more or less acute angle to applied force generally with some pulverized material along its surface                                                                                                                                                                                                                                                                     |         |
| Joint            | A fracture in rock, generally more or less vertical or transverse to bedding, along which no appreciable movement has occurred.                                                                                                                                                                                                                                                         |         |
| Parting          | A small joint in rock or a layered rock where the tendency of crystals to separate along certain planes that are not true cleavage planes.                                                                                                                                                                                                                                              |         |
| Sheared<br>Zone  | A fracture that results from stresses which tend to shear one part of a specimen past the adjacent part                                                                                                                                                                                                                                                                                 |         |



APPENDIX D

AGS AUSTRALIAN GEOGUIDE LR7 (LANDSLIDE RISK) GUIDELINES TO GOOD AND BAD HILLSIDE PRACTICES



### AUSTRALIAN GEOGUIDE LR7 (LANDSLIDE RISK)

### LANDSLIDE RISK

#### Concept of Risk

Risk is a familiar term, but what does it really mean? It can be defined as "a measure of the probability and severity of an adverse effect to health, property, or the environment." This definition may seem a bit complicated. In relation to landslides, geotechnical practitioners (GeoGuide LR1) are required to assess risk in terms of the likelihood that a particular landslide will occur and the possible consequences. This is called landslide risk assessment. The consequences of a landslide are many and varied, but our concerns normally focus on loss of, or damage to, property and loss of life.

#### Landslide Risk Assessment

Some local councils in Australia are aware of the potential for landslides within their jurisdiction and have responded by designating specific "landslide hazard zones". Development in these areas is often covered by special regulations. If you are contemplating building, or buying an existing house, particularly in a hilly area, or near cliffs, go first for information to your local council.

#### Landslide risk assessment must be undertaken by

<u>a geotechnical practitioner</u>. It may involve visual inspection, geological mapping, geotechnical investigation and monitoring to identify:

- potential landslides (there may be more than one that could impact on your site)
- the likelihood that they will occur
- the damage that could result
- the cost of disruption and repairs and
- the extent to which lives could be lost.

Risk assessment is a predictive exercise, but since the ground and the processes involved are complex, prediction tends to lack precision. If you commission a

landslide risk assessment for a particular site you should expect to receive a report prepared in accordance with current professional guidelines and in a form that is acceptable to your local council, or planning authority.

#### **Risk to Property**

Table 1 indicates the terms used to describe risk to property. Each risk level depends on an assessment of how likely a landslide is to occur and its consequences in dollar terms. "Likelihood" is the chance of it happening in any one year, as indicated in Table 2. "Consequences" are related to the cost of repairs and temporary loss of use if a landslide occurs. These two factors are combined by the geotechnical practitioner to determine the Qualitative Risk.

| TABLE 2: LIKELIHOOD |
|---------------------|
|---------------------|

| Likelihood      | Annual Probability |
|-----------------|--------------------|
| Almost Certain  | 1:10               |
| Likely          | 1:100              |
| Possible        | 1:1,000            |
| Unlikely        | 1:10,000           |
| Rare            | 1:100,000          |
| Barely credible | 1:1,000,000        |

The terms "unacceptable", "may be tolerated", etc. in Table 1 indicate how most people react to an assessed risk level. However, some people will always be more prepared, or better able, to tolerate a higher risk level than others.

Some local councils and planning authorities stipulate a maximum tolerable level of risk to property for developments within their jurisdictions. In these situations the risk must be assessed by a geotechnical practitioner. If stabilisation works are needed to meet the stipulated requirements these will normally have to be carried out as part of the development, or consent will be withheld.

#### TABLE 1: RISK TO PROPERTY

| Qualitative Risk |    | Significance - Geotechnical engineering requirements                                                                                                                                                                                                                          |  |
|------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Very high        | VH | <b>Unacceptable</b> without treatment. Extensive detailed investigation and research, planning and implementation of treatment options essential to reduce risk to Low. May be too expensive and not practical. Work likely to cost more than the value of the property.      |  |
| High             | Н  | <b>Unacceptable</b> without treatment. Detailed investigation, planning and implementation of treatment options required to reduce risk to acceptable level. Work would cost a substantial sum in relation to the value of the property.                                      |  |
| Moderate         | М  | <b>May be tolerated</b> in certain circumstances (subject to regulator's approval) but requires investigation, planning and implementation of treatment options to reduce the risk to Low. Treatment options to reduce to Low risk should be implemented as soon as possible. |  |
| Low              | L  | <b>Usually acceptable</b> to regulators. Where treatment has been needed to reduce the risk to this level, ongoing maintenance is required.                                                                                                                                   |  |
| Very Low         | VL | Acceptable. Manage by normal slope maintenance procedures.                                                                                                                                                                                                                    |  |

#### **Risk to Life**

Most of us have some difficulty grappling with the concept of risk and deciding whether, or not, we are prepared to accept it. However, without doing any sort of analysis, or commissioning a report from an "expert", we all take risks every day. One of them is the risk of being killed in an accident. This is worth thinking about, because it tells us a lot about ourselves and can help to put an assessed risk into a meaningful context. By identifying activities that we either are, or are not, prepared to engage in we can get some indication of the maximum level of risk that we are prepared to take. This knowledge can help us to decide whether we really are able to accept a particular risk, or to tolerate a particular likelihood of loss, or damage, to our property (Table 2).

In Table 3, data from NSW for the years 1998 to 2002, and other sources, is presented. A risk of 1 in 100,000 means that, in any one year, 1 person is killed for every 100,000 people undertaking that particular activity. The NSW data assumes that the whole population undertakes the activity. That is, we are all at risk of being killed in a fire, or of choking on our food, but it is reasonable to assume that only people who go deep sea fishing run a risk of being killed while doing it.

It can be seen that the risks of dying as a result of falling, using a motor vehicle, or engaging in waterrelated activities (including bathing) are all greater than 1:100,000 and yet few people actively avoid situations where these risks are present. Some people are averse to flying and yet it represents a lower risk than choking to death on food. Importantly, the data also indicate that, even when the risk of dying as a consequence of a particular event is very small, it could still happen to any one of us any day. If this were not so, no one would ever be struck by lightning.

Most local councils and planning authorities that stipulate a tolerable risk to property also stipulate a tolerable risk to life. The AGS Practice Note Guideline recommends that 1:100,000 is tolerable in newly developed areas, where works can be carried out as part of the development to limit risk. The tolerable level is raised to 1:10,000 in established areas, where specific landslide hazards may have existed for many years. The distinction is deliberate and intended to prevent the concept of landslide risk management, for its own sake, becoming an unreasonable financial burden on existing communities. Acceptable risk is usually taken to be one tenth of the tolerable risk (1:1,000,000 for new developments and 1:100,000 for established areas) and efforts should be made to attain these where it is practicable and financially realistic to do so.

| TABI F | 3: | RISK   | то | LIFE |
|--------|----|--------|----|------|
| IADEE  | σ. | 111011 |    |      |

| Risk (deaths per<br>participant per<br>year) | Activity/Event Leading to<br>Death<br>(NSW data unless noted) |  |
|----------------------------------------------|---------------------------------------------------------------|--|
| 1:1,000                                      | Deep sea fishing (UK)                                         |  |
| 1:1,000 to<br>1:10,000                       | Motor cycling, horse riding ,<br>ultra-light flying (Canada)  |  |
| 1:23,000                                     | Motor vehicle use                                             |  |
| 1:30,000                                     | Fall                                                          |  |
| 1:70,000                                     | Drowning                                                      |  |
| 1:180,000                                    | Fire/burn                                                     |  |
| 1:660,000                                    | Choking on food                                               |  |
| 1:1,000,000                                  | Scheduled airlines (Canada)                                   |  |
| 1:2,300,000                                  | Train travel                                                  |  |
| 1:32,000,000                                 | Lightning strike                                              |  |

More information relevant to your particular situation may be found in other AUSTRALIAN GEOGUIDES:

| • | GeoGuide LR1  | - Introduction                 |  |
|---|---------------|--------------------------------|--|
| • | GeoGuide I R2 | <ul> <li>Landslides</li> </ul> |  |

- GeoGuide LR3 Landslides in Soil
- GeoGuide LR4 Landslides in Rock
- GeoGuide LR5 Water & Drainage

- GeoGuide LR6 Retaining Walls
  - GeoGuide LR8 Hillside Construction
  - GeoGuide LR9 Effluent & Surface Water Disposal
- GeoGuide LR10 Coastal Landslides
- GeoGuide LR11 Record Keeping

The Australian GeoGuides (LR series) are a set of publications intended for property owners; local councils; planning authorities; developers; insurers; lawyers and, in fact, anyone who lives with, or has an interest in, a natural or engineered slope, a cutting, or an excavation. They are intended to help you understand why slopes and retaining structures can be a hazard and what can be done with appropriate professional advice and local council approval (if required) to remove, reduce, or minimise the risk they represent. The GeoGuides have been prepared by the <u>Australian Geomechanics Society</u>, a specialist technical society within Engineers Australia, the national peak body for all engineering disciplines in Australia, whose members are professional geotechnical engineers and engineering geologists with a particular interest in ground engineering. The GeoGuides have been funded under the Australian governments' National Disaster Mitigation Program.

### PRACTICE NOTE GUIDELINES FOR LANDSLIDE RISK MANAGEMENT 2007

### APPENDIX G - SOME GUIDELINES FOR HILLSIDE CONSTRUCTION

#### **GOOD ENGINEERING PRACTICE**

#### POOR ENGINEERING PRACTICE

| ADVICE                                       |                                                                                |                                                                                              |  |  |
|----------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|
| GEOTECHNICAL                                 | Obtain advice from a qualified, experienced geotechnical practitioner at early | Prepare detailed plan and start site works before                                            |  |  |
| ASSESSMENT                                   | stage of planning and before site works.                                       | geotechnical advice.                                                                         |  |  |
| PLANNING                                     | · · · · · · · · · · · · · · · · · · ·                                          |                                                                                              |  |  |
| SITE PLANNING                                | Having obtained geotechnical advice, plan the development with the risk        | Plan development without regard for the Risk.                                                |  |  |
| DESIGN AND CONS                              | TRUCTION                                                                       |                                                                                              |  |  |
|                                              | Use flexible structures which incorporate properly designed brickwork timber   | Floor plans which require extensive cutting and                                              |  |  |
| HOUSE DESIGN                                 | or steel frames, timber or panel cladding.                                     | filling.                                                                                     |  |  |
| HOUSE DESIGN                                 | Consider use of split levels.                                                  | Movement intolerant structures.                                                              |  |  |
|                                              | Use decks for recreational areas where appropriate.                            |                                                                                              |  |  |
| SITE CLEARING                                | Retain natural vegetation wherever practicable.                                | Indiscriminately clear the site.                                                             |  |  |
| DRIVEWAYS                                    | Council specifications for grades may need to be modified                      | geotechnical advice                                                                          |  |  |
| Dia Dia mini                                 | Driveways and parking areas may need to be fully supported on piers.           | gootoonnioui uu roor                                                                         |  |  |
| EARTHWORKS                                   | Retain natural contours wherever possible.                                     | Indiscriminatory bulk earthworks.                                                            |  |  |
| G                                            | Minimise depth.                                                                | Large scale cuts and benching.                                                               |  |  |
| CUTS                                         | Support with engineered retaining walls or batter to appropriate slope.        | Unsupported cuts.<br>Ignore drainage requirements                                            |  |  |
|                                              | Minimise height.                                                               | Loose or poorly compacted fill, which if it fails,                                           |  |  |
|                                              | Strip vegetation and topsoil and key into natural slopes prior to filling.     | may flow a considerable distance including                                                   |  |  |
| _                                            | Use clean fill materials and compact to engineering standards.                 | onto property below.                                                                         |  |  |
| FILLS                                        | Batter to appropriate slope or support with engineered retaining wall.         | Block natural drainage lines.                                                                |  |  |
|                                              | Provide surface drainage and appropriate subsurface drainage.                  | Include stumps trees vegetation topsoil                                                      |  |  |
|                                              |                                                                                | boulders, building rubble etc in fill.                                                       |  |  |
| ROCK OUTCROPS                                | Remove or stabilise boulders which may have unacceptable risk.                 | Disturb or undercut detached blocks or                                                       |  |  |
| & BOULDERS                                   | Support rock faces where necessary.                                            | boulders.                                                                                    |  |  |
|                                              | Engineer design to resist applied soil and water forces.                       | construct a structurally inadequate wall such as<br>sandstone flagging brick or unreinforced |  |  |
| RETAINING                                    | Provide subsurface drainage within wall backfill and surface drainage on slope | blockwork.                                                                                   |  |  |
| WALLS                                        | above.                                                                         | Lack of subsurface drains and weepholes.                                                     |  |  |
| -                                            | Construct wall as soon as possible after cut/fill operation.                   |                                                                                              |  |  |
|                                              | Found within rock where practicable.                                           | Found on topsoil, loose fill, detached boulders                                              |  |  |
| FOOTINGS                                     | Design for lateral creep pressures if necessary                                | of undercut chirts.                                                                          |  |  |
|                                              | Backfill footing excavations to exclude ingress of surface water.              |                                                                                              |  |  |
|                                              | Engineer designed.                                                             |                                                                                              |  |  |
|                                              | Support on piers to rock where practicable.                                    |                                                                                              |  |  |
| S WIMMING POOLS                              | Design for high soil pressures which may develop on unhill side whilst there   |                                                                                              |  |  |
|                                              | may be little or no lateral support on downhill side.                          |                                                                                              |  |  |
| DRAINAGE                                     |                                                                                |                                                                                              |  |  |
|                                              | Provide at tops of cut and fill slopes.                                        | Discharge at top of fills and cuts.                                                          |  |  |
| SUDEACE                                      | Discharge to street drainage or natural water courses.                         | Allow water to pond on bench areas.                                                          |  |  |
| SURFACE                                      | Line to minimise infiltration and make flexible where possible.                |                                                                                              |  |  |
|                                              | Special structures to dissipate energy at changes of slope and/or direction.   |                                                                                              |  |  |
|                                              | Provide filter around subsurface drain.                                        | Discharge roof runoff into absorption trenches.                                              |  |  |
| SUBSURFACE                                   | Provide drain behind retaining walls.                                          |                                                                                              |  |  |
|                                              | Prevent inflow of surface water.                                               |                                                                                              |  |  |
| SEDTIC &                                     | Usually requires pump-out or mains sewer systems; absorption trenches may      | Discharge sullage directly onto and into slopes.                                             |  |  |
| SULLAGE                                      | be possible in some areas if risk is acceptable.                               | Use absorption trenches without consideration                                                |  |  |
| EDOSION                                      | Storage tanks should be water-tight and adequately founded.                    | of landslide risk.                                                                           |  |  |
| CONTROL &                                    | Control erosion as this may lead to instability.<br>Revegetate cleared area    | ranule to observe earthworks and drainage recommendations when landscaping                   |  |  |
| LANDSCAPING                                  |                                                                                |                                                                                              |  |  |
| DRAWINGS AND SITE VISITS DURING CONSTRUCTION |                                                                                |                                                                                              |  |  |
| DRAWINGS                                     | Building Application drawings should be viewed by geotechnical consultant      |                                                                                              |  |  |
| SITE VISITS                                  | Site Visits by consultant may be appropriate during construction/              |                                                                                              |  |  |
| INSPECTION AND                               | MAINTENANCE BY OWNER                                                           |                                                                                              |  |  |
| OWNER'S                                      | Clean drainage systems; repair broken joints in drains and leaks in supply     |                                                                                              |  |  |
| RESPONSIBILITY                               | pipes.<br>Where structural distress is evident see advice                      |                                                                                              |  |  |
|                                              | If seepage observed, determine causes or seek advice on consequences.          |                                                                                              |  |  |

### PRACTICE NOTE GUIDELINES FOR LANDSLIDE RISK MANAGEMENT 2007



# EXAMPLES OF **POOR** HILLSIDE PRACTICE

